已知若干三维点坐标(),拟合出平面方程 (1)
约束条件为 (2)
使得该平面到所有点的距离之和最小。
推导过程如下:
所有点的平均坐标为(),则. (3)
式(1)与式(3)相减,得 (4)
假设矩阵,列矩阵X = ,则式(4)等价与AX=0 (5)
理想情况下所有点都在平面上,式(5)成立;实际情况下有部分点在平面外,拟合的目的为平面距离所有点的距离之和尽量小,所以目标函数为 (6)
约束条件为 (7)
若A可做奇异值分解: (8)
其中,D是对角矩阵,U和V均为酉矩阵。
则 (9)
其中为列矩阵,并且 (10)
因为D的对角元素为奇异值,假设最后一个对角元素为最小奇异值,则当且仅当
(11)时,式(9)可以取得最小值,即式(6)成立。
此时 (12)
所以,目标函数(6)在约束条件(7)下的最优解为 (13)
综上:对矩阵A做奇异值分解,最小奇异值对应的特征向量就是拟合平面的系数向量。