BlurPool:Making Convolutional Networks Shift-Invariant Again【附Pytorch实现】

论文地址:https://arxiv.org/abs/1904.11486

GitHub:https://github.com/adobe/antialiased-cnns/blob/master/antialiased_cnns

1、动机

作者发现,CNNs是不具备平移不变性的,因为当输入发生微小的平移或者变换的时候,输出会产生剧烈变化,如下图1中黑色线条所示:

作者分析,这是由于带有下采样的操作(如步长>2的卷积、池化)所带来的,因为这些下采样方法忽略了信号处理领域的一个常识:在对信号下采样之前,需要使用低通滤波来抗混叠。但是,直接将低通滤波器插入到网络中,会带来性能下降。

于是,作者将低通滤波器与现有方法相融合,提出了BlurPool方法。

2、方法

2.1、平移不变性和平移等变性

对于一个函数\widetilde{\mathcal F},如果输出随着输入一同发生平移,则改函数具备平移等变性:

\operatorname{Shift}_{\Delta h, \Delta w}(\widetilde{\mathcal{F}}(X))=\widetilde{\mathcal{F}}\left(\operatorname{Shift}_{\Delta h, \Delta w}(X)\right) \quad \forall(\Delta h, \Delta w)   (1)

如果输入发生平移,而输出不变,则说明改函数具备平移不变性:

\widetilde{\mathcal{F}}(X)=\widetilde{\mathcal{F}}\left(\operatorname{Shift}_{\Delta h, \Delta w}(X)\right) \quad \forall(\Delta h, \Delta w)   (2)

很多时候,公式(1)和(2)只在平移量为N的整数倍时才成立,此时,称之为“周期平移不变性/等变性”。

2.2、BlurPool和现有方法的融合

所提出的BlurPool方法能够集成到现有的一些操作中,如MaxPooling、Strided-Convolution、AveragePooling,各集成方法如图2所示:

  • 对于MaxPooling,可将其分解为两个部分:步长为1的Max和步长为2的BlurPool;
  • 同理,步长为2的Conv+ReLU可以分解为:步长为1的Conv+ReLU+步长为2的BlurPool;
  • 同理,AvgPool可等价于步长为2的BlurPool。

以MaxPooling为例,其分解前后示意如图3所示:

不过值得一提的是,BlurPool并没有解决平移不变性的丢失,不过可以在很大程度上进行缓解,也即如上图3Bottom部分所示。

3、Pytorch实现

import torch
import torch.nn.parallel
import numpy as np
import torch.nn as nn
import torch.nn.functional as F


class BlurPool(nn.Module):
    def __init__(self, channels, pad_type='reflect', filt_size=4, stride=2, pad_off=0):
        super(BlurPool, self).__init__()
        self.filt_size = filt_size
        self.pad_off = pad_off
        self.pad_sizes = [int(1. * (filt_size - 1) / 2), int(np.ceil(1. * (filt_size - 1) / 2)),
                          int(1. * (filt_size - 1) / 2), int(np.ceil(1. * (filt_size - 1) / 2))]
        self.pad_sizes = [pad_size + pad_off for pad_size in self.pad_sizes]
        self.stride = stride
        self.off = int((self.stride - 1) / 2.)
        self.channels = channels

        if self.filt_size == 1:
            a = np.array([1., ])
        elif self.filt_size == 2:
            a = np.array([1., 1.])
        elif self.filt_size == 3:
            a = np.array([1., 2., 1.])
        elif self.filt_size == 4:
            a = np.array([1., 3., 3., 1.])
        elif self.filt_size == 5:
            a = np.array([1., 4., 6., 4., 1.])
        elif self.filt_size == 6:
            a = np.array([1., 5., 10., 10., 5., 1.])
        elif self.filt_size == 7:
            a = np.array([1., 6., 15., 20., 15., 6., 1.])

        filt = torch.Tensor(a[:, None] * a[None, :])
        filt = filt / torch.sum(filt)
        self.register_buffer('filt', filt[None, None, :, :].repeat((self.channels, 1, 1, 1)))

        self.pad = get_pad_layer(pad_type)(self.pad_sizes)

    def forward(self, inp):
        if self.filt_size == 1:
            if self.pad_off == 0:
                return inp[:, :, ::self.stride, ::self.stride]
            else:
                return self.pad(inp)[:, :, ::self.stride, ::self.stride]
        else:
            return F.conv2d(self.pad(inp), self.filt, stride=self.stride, groups=inp.shape[1])


def get_pad_layer(pad_type):
    if pad_type in ['refl', 'reflect']:
        PadLayer = nn.ReflectionPad2d
    elif pad_type in ['repl', 'replicate']:
        PadLayer = nn.ReplicationPad2d
    elif pad_type == 'zero':
        PadLayer = nn.ZeroPad2d
    else:
        print('Pad type [%s] not recognized' % pad_type)
    return PadLayer

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AICVHub

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值