二十五. 智能驾驶之基于点云分割和聚类的障碍物检测

        在智能驾驶领域, 根据使用的传感器的不同,对障碍物的检测和识别通常有3种做法:

1.一种是基于相机图像和点云鸟瞰图的纯图像障碍物检测, 比如YOLO三维;

2.一种是将相机和雷达进行联合标定, 使用相机图像,利用基于深度学习的物体检测网络识别图像中物体,将相机得到的检测目标投射到3维的点云空间,融合图像检测和点云聚类实现目标检测和分类;

3.另一种是,直接利用激光雷达的点云,利用传统方法进行点云分割和聚类,也有利用基于点云的神经网络如PointNet++等, 识别出路面和障碍物;

       本例采用第3种方法中较传统的方法, 直接通过对点云的分割和聚类实现障碍物检测.

技术难点有两点:

1>. 地面和非地面点云分割;

        基本思路是: 将基于3维笛卡尔坐标系的所有点云点坐标(x,y,z), 映射为以雷达为中心,以地面平面X-Y为基面的(d,θ,z)坐标系.

        这里的d:  为点云中某点在X-Y平面的投影点,到雷达中心点的距离.  计算公式很简单:

       这里的θ:   为点云点 投影到X-Y平面的点,与X轴正方向轴的夹角, 其取值范围为: [0,360]. 假设都是基于角度的话, 其计算公式为:  

      这里的z: 为点云点在其原3维笛卡尔坐标系中的坐标z值. 

      下一步就是给这些无序的(d,θ,z)点分门别类了.  其思路如下:

        其原理非常类似于电脑磁盘的扇区和柱面.  一个硬盘有若干个盘面, 相当于(x,y,z),坐标系的不同的z坐标值; 每个盘面又以一定的角度区间划分为不同的扇区,  相当于不同θ扇区; 每个扇面上又划分不同的同心径向磁道(所有盘面叠在一起就是一个同心径向柱),相当于公式中的d值.

        一般基于雷达扫描一圈的角度分辨率,比如单线一圈2000个扫描点, 那么紧邻两点之间的角度变化就是: 360/2000 = 0.18度.  基于此,我们把X-Y平面以雷达为中心分成2000个扇区, 按照径向距离的不同,分出若干的同心环道(类似磁盘的磁道),比如64线激光雷达,我们可以分出64个同心环道. 这样所有的点云中的点, 就被我们有序地分布到基于不同θ的扇区, 不同径向距离d的径向环道, 而其z值 仍然是在原始点云中的高度值z.

        类似下图的效果:

        有了上述的(d,θ,z)坐标系有序点, 下一步只需要对每个径向扇区内由近到远的各个径向环道内点,进行基于斜率阈值的直线拟合即可.

2>. 点云聚类;

        这块主要是利用pcl库的,基于KD树的欧几里德聚类, 具体理论这里就不阐述了, 主要接口类:

pcl::search::KdTree<pcl::PointXYZ>和pcl::EuclideanClusterExtraction<pcl::PointXYZ>

一. 获取原始点云信息

二. 原始点云数据量较大,为降低后续计算量,对点云进行体素(Voxel)降采样或称稀疏化.

降采样前:

降采样后:

//下采样后点云
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>());

//体素滤波
pcl::VoxelGrid<pcl::PointXYZ> voxelFilter;
voxelFilter.setInputCloud(originPointCloud);
voxelFilter.setLeafSize(0.1f,0.1f,0.1f);
voxelFilter.filter(*cloud_filtered);

三. 裁剪点云, 去除高于车身顶部的点云点, 同样为了降低后续计算量.

裁剪顶部以上点云前:

裁剪顶部以上点云后:

        这里基本是基于z坐标高度和x-y的进行距离过滤, 代码很简单.

四. 分离出地面和非地面点云

为了视觉直观, 切换个合适角度:

分离出的地面点云:

分离出的非地面点云,  用于后续障碍物检测,做点云分割和聚类:

五. 点云分割和聚类

换个合适角度,俯视全局点云:

从俯视角度,查看分割和聚类结果:

回到地面,换个角度,查看点云:

从地面角度,查看分割和聚类结果:

走近查看细节点云:

走仅查看细节分割和聚类结果:

    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);

    //create 2d point cloud
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_2d(new pcl::PointCloud<pcl::PointXYZ>);
    pcl::copyPointCloud(*pointCloud, *cloud_2d);
    
    for (size_t i = 0; i < cloud_2d->points.size(); i++)
    {
        cloud_2d->points[i].z = 0; //仅在X-Y平面聚类,不需要考虑z坐标
    }

    if (cloud_2d->points.size() > 0)
        tree->setInputCloud(cloud_2d);

    std::vector<pcl::PointIndices> pointIndices;

    pcl::EuclideanClusterExtraction<pcl::PointXYZ> euclid;
    euclid.setInputCloud(cloud_2d);
    euclid.setClusterTolerance(in_max_cluster_distance);
    euclid.setMinClusterSize(MIN_CLUSTER_SIZE);
    euclid.setMaxClusterSize(MAX_CLUSTER_SIZE);
    euclid.setSearchMethod(tree);
    euclid.extract(pointIndices);

  • 4
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 14
    评论
Lidar点云分割聚类算法是一种利用激光雷达扫描数据进行地物分类和分析的算法。激光雷达通过发射激光束并接收反射回来的信号,可以获取到地物的三维坐标信息。而激光雷达扫描得到的原始数据是一组离散的信息,需要进行分割和聚类处理才能得到有意义的结果。 点云分割算法的主要目标是将原始云数据分割成不同的地物部分。常用的分割算法有基于几何特征和基于特征提取的方法。基于几何特征的算法主要依靠云中的相邻关系进行分割,比如根据间距、法线方向等信息来判断是否属于同一地物。而基于特征提取的算法则通过对云进行特征提取,比如曲率、形状描述子等,根据不同特征之间的相似性进行聚类,从而实现云的分割。 聚类算法则是对分割后的云进行进一步的聚类,将属于同一地物的划分为一个簇。聚类算法常用的方法包括基于密度和基于连通关系的方法。基于密度的聚类算法通过确定的密度来判断是否属于同一簇,如DBSCAN算法。而基于连通关系的聚类算法则依靠之间的连通关系进行划分,比如基于区域生长的算法。 通过点云分割聚类算法,可以有效地提取地物的相关信息,如建筑物、树木、道路等,为后续的地物识别、地物分类、场景分析等应用提供有价值的数据基础。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值