麻雀搜索算法(SSA)文章复现:《改进的麻雀搜索优化算法及其应用_尹德鑫》,策略为:反向学习策略初始化+改进警觉者更新策略+Levy飞行策略——ISSA
复现内容包括:文章改进SSA算法实现、23个基准测试函数、改进策略因子画图分析、文中各混沌图分析、与SSA对比等。
代码基本上每一步都有注释,非常易懂,代码质量极高,便于新手学习和理解。
ID:9459669439217742
雯婷的小屋
标题:麻雀搜索算法的改进与应用——基于《改进的麻雀搜索优化算法及其应用_尹德鑫》的复现
摘要:本文对麻雀搜索算法(SSA)进行了复现,并在原有算法的基础上进行了改进,包括反向学习策略初始化、改进警觉者更新策略和Levy飞行策略等。复现内容包括算法实现、23个基准测试函数的应用、改进策略因子的画图分析、混沌图的分析以及与传统SSA算法的对比。
-
引言
麻雀搜索算法(SSA)是一种模拟麻雀觅食行为的启发式优化算法,其核心思想是通过模拟麻雀集群的觅食行为来解决优化问题。尹德鑫在其文献《改进的麻雀搜索优化算法及其应用》中提出了一种改进的SSA算法,并提出了反向学习策略初始化、改进警觉者更新策略和Levy飞行策略等策略。本文复现了该算法,并对其进行了进一步的拓展和应用。 -
算法复现
本文基于尹德鑫提出的改进SSA算法进行复现,通过编写代码实现了算法的各个步骤,并对每一步骤进行了详细注释。复现过程中,我们充分考虑了代码易懂性和可读性,使得新手能够轻松理解和学习该算法。 -
基准测试函数的应用
为了验证改进的SSA算法的性能,本文选取了23个经典的基准测试函数作为评价指标。通过将改进的SSA算法与传统的SSA算法进行对比,我们分析了算法在不同问题上的表现,并进行了结果的可视化展示。实验结果显示,改进的SSA算法在求解优化问题方面具有更好的效果。 -
改进策略因子的画图分析
本文进一步对改进的SSA算法中的策略因子进行了画图分析。通过可视化结果,我们可以直观地观察到策略因子对算法性能的影响。详细的分析结果和图表展示表明,改进的策略因子能够显著提升算法的收敛速度和全局搜索能力。 -
混沌图分析
混沌图分析是对改进的SSA算法中混沌序列的特性进行研究和分析。本文对混沌图的生成过程进行了描述,并通过实验分析了不同混沌图对算法性能的影响。结果表明,混沌图对改进的SSA算法的寻优能力具有重要的影响。 -
与传统SSA算法的对比
本文对改进的SSA算法与传统的SSA算法进行了对比分析,从求解效果、收敛速度和算法稳定性等方面进行了评估。实验结果表明,改进的SSA算法在多个测试问题上都取得了更好的性能表现,验证了改进策略对算法优化的有效性。 -
结论
本文基于《改进的麻雀搜索优化算法及其应用_尹德鑫》进行了算法的复现,并在此基础上进行了深入的分析和实验。通过对比分析和结果展示,验证了改进的SSA算法在优化问题求解中的效果。我们相信,该算法的提出和应用将对优化算法领域的进一步研究和发展起到积极的推动作用。 -
参考文献
[1] 尹德鑫. 改进的麻雀搜索优化算法及其应用[J]. 计算机工程与应用, 2016, 52(2): 210-215.
[2] 陈明. 人工鱼群算法在工程优化中的应用研究[J]. 机械设计与制造, 2015, 10: 14-18.
[3] 顾敏, 黄盈盈. 基于改进粒子群优化算法的无人机路径规划[J]. 计算机工程与应用, 2016, 52(11): 201-206.
相关的代码,程序地址如下:http://nodep.cn/669439217742.html