TensorRT INT8 量化YOLO模型—— python

TensorRT 是 NVIDIA 提供的高性能深度学习推理库,支持 INT8 量化以加速模型推理。以下是使用 TensorRT 对 YOLO 模型(如 YOLOv5、YOLOv8 或 YOLOv11)进行 INT8 量化的具体步骤:


TensorRT INT8 量化的具体步骤

1. 准备工作

  • 环境要求

    • 安装 CUDA 和 cuDNN。
    • 安装 TensorRT(建议使用与 CUDA 版本匹配的 TensorRT 版本)。
    • 安装 PyTorch 和 ONNX(用于模型转换)。
  • 依赖安装

    pip install torch torchvision onnx onnxruntime tensorrt
    
  • 校准数据集

    • 准备一个小型校准数据集(通常 100-1000 张图片即可),用于 TensorRT 的 INT8 校准。

2. 将 YOLO 模型导出为 ONNX 格式

TensorRT 支持从 ONNX 格式的模型进行量化。首先需要将 YOLO 模型导出为 ONNX 格式。

示例代码(以 YOLOv5 为例):
import torch
from models.experimental import attempt_load

# 加载 YOLO 模型
model = attempt_load('yolov5s.pt', map_location=torch.device('cpu'))

# 设置模型为推理模式
model.eval()

# 定义输入张量(batch_size, channels, height, width)
dummy_input = torch.randn(1, 3, 640, 640)

# 导出为 ONNX 格式
torch.onnx.export(
    model,                      # 模型
    dummy_input,                # 输入张量
    "yolov5s.onnx",             # 输出文件名
    opset_version=11,           # ONNX 版本
    input_names=["images"],     # 输入节点名称
    output_names=["output"],    # 输出节点名称
    dynamic_axes={
   "images": {
   0: "batch_size"}, "output": {
   0: "batch_size"}}  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值