TensorRT 是 NVIDIA 提供的高性能深度学习推理库,支持 INT8 量化以加速模型推理。以下是使用 TensorRT 对 YOLO 模型(如 YOLOv5、YOLOv8 或 YOLOv11)进行 INT8 量化的具体步骤:
TensorRT INT8 量化的具体步骤
1. 准备工作
-
环境要求:
- 安装 CUDA 和 cuDNN。
- 安装 TensorRT(建议使用与 CUDA 版本匹配的 TensorRT 版本)。
- 安装 PyTorch 和 ONNX(用于模型转换)。
-
依赖安装:
pip install torch torchvision onnx onnxruntime tensorrt
-
校准数据集:
- 准备一个小型校准数据集(通常 100-1000 张图片即可),用于 TensorRT 的 INT8 校准。
2. 将 YOLO 模型导出为 ONNX 格式
TensorRT 支持从 ONNX 格式的模型进行量化。首先需要将 YOLO 模型导出为 ONNX 格式。
示例代码(以 YOLOv5 为例):
import torch
from models.experimental import attempt_load
# 加载 YOLO 模型
model = attempt_load('yolov5s.pt', map_location=torch.device('cpu'))
# 设置模型为推理模式
model.eval()
# 定义输入张量(batch_size, channels, height, width)
dummy_input = torch.randn(1, 3, 640, 640)
# 导出为 ONNX 格式
torch.onnx.export(
model, # 模型
dummy_input, # 输入张量
"yolov5s.onnx", # 输出文件名
opset_version=11, # ONNX 版本
input_names=["images"], # 输入节点名称
output_names=["output"], # 输出节点名称
dynamic_axes={
"images": {
0: "batch_size"}, "output": {
0: "batch_size"}}