TensorRT INT8 量化YOLO模型—— trtexec

TensorRT 提供了 trtexec 工具,可以方便地将模型转换为 TensorRT 引擎,并支持 INT8 量化。trtexec 是一个命令行工具,适用于快速测试和部署模型,尤其适合对 ONNX 或 UFF 格式的模型进行量化和优化。

以下是使用 trtexec 进行 INT8 量化的具体步骤:


1. 准备工作

  • 安装 TensorRT

    • 确保已安装 TensorRT,并且 trtexec 工具可用。trtexec 通常位于 TensorRT 安装目录的 bin 文件夹中。
    • trtexec 添加到系统环境变量中,或者直接使用其完整路径。
  • 准备校准数据集

    • 准备一个小型校准数据集(通常 100-1000 张图片),用于 INT8 量化校准。
    • 校准数据集需要以 TensorRT 支持的格式存储(如 .npy 文件或图像文件)。
  • 导出模型为 ONNX 格式

    • 如果模型是 PyTorch 或 TensorFlow 格式,需要先将其导出为 ONNX 格式。
    • 以 YOLOv5 为例,导出 ONNX 模型的命令如下:
      python export.py 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值