TensorRT 提供了 trtexec
工具,可以方便地将模型转换为 TensorRT 引擎,并支持 INT8 量化。trtexec
是一个命令行工具,适用于快速测试和部署模型,尤其适合对 ONNX 或 UFF 格式的模型进行量化和优化。
以下是使用 trtexec
进行 INT8 量化的具体步骤:
1. 准备工作
-
安装 TensorRT:
- 确保已安装 TensorRT,并且
trtexec
工具可用。trtexec
通常位于 TensorRT 安装目录的bin
文件夹中。 - 将
trtexec
添加到系统环境变量中,或者直接使用其完整路径。
- 确保已安装 TensorRT,并且
-
准备校准数据集:
- 准备一个小型校准数据集(通常 100-1000 张图片),用于 INT8 量化校准。
- 校准数据集需要以 TensorRT 支持的格式存储(如
.npy
文件或图像文件)。
-
导出模型为 ONNX 格式:
- 如果模型是 PyTorch 或 TensorFlow 格式,需要先将其导出为 ONNX 格式。
- 以 YOLOv5 为例,导出 ONNX 模型的命令如下:
python export.py