多元正态分布
先定义一个d元随机向量,这里用列向量来表示,每一个元素都是一个一元随机变量,如
,其转置为
其中表示这个多元随机变量的第i个分量,它是一个一维的随机变量。
高斯分布主要是用均值和方差来作为参数的分布,我们来看看随机向量的均值和方差
关于方差,在多元分布里面,就是协方差矩阵
其中
是协方差矩阵的逆,
是协方差矩阵的行列式
是非负矩阵,但是我们只考虑正定矩阵的情况
现在来看多元正态分布的函数表达式
现在来看二元正态分布的情况
均值
协方差矩阵
在来计算二维正态分布的协方差矩阵的行列式
因为
为了求出协方差矩阵的逆,首先看一下一些线性代数的概念,假设有矩阵
那么第i行,第j列的代数余子式为去掉A第i行,第j列之后的矩阵的行列式,记为
那上面的矩阵A为例子,那么
那么代数余子式为
那么我们可以定义:矩阵A的伴随矩阵是A的余子矩阵的转置矩阵
同样用矩阵A来做例子,有如下公式
那么矩阵A的逆矩阵就是
现在来计算二元高斯函数的协方差矩阵的逆矩阵
那么协方差矩阵的伴随矩阵为:
那么协方差矩阵的逆矩阵为
指数部分
考虑到这里得到下面的结论
那么二元正态分布的函数表达式为
如果我们引入相关性,可以得到另外一种形式,先看相关性的定义
<b
其中
同样
那么
变形得到,将其代入上面得到的二元正态分布函数中,可以得到另外一种表达方式
整理得到
继续整理
继续整理
得到
这就是用相关系数来表示的二维正态分布的表现形式
下面看看二维正态分布的条件分布公式
整理一下得到,条件分布公式为
可以看出,只要求出其中一个,另外一个的坐标做相应的调换就可以了