基于视网膜图像采集算法的血管疾病预测
1. 引言
视网膜血管疾病影响着众多人群,视网膜血管状况如同人体血管疾病的镜子。人类视网膜图像能提供大量诊断信息,可揭示糖尿病、心血管疾病、高血压等多种血管疾病。本文聚焦于利用视网膜图像采集实现血管疾病的自动预测,该技术不仅能助力疾病诊断,还可预防和减少视力损伤,降低筛查成本。
视网膜是眼睛的内部结构,其中的视盘呈椭圆形,位于视网膜中心,视神经则负责辐射主要血管。视网膜血管的观察对于多种血管疾病的诊断至关重要,如糖尿病视网膜病变、动脉硬化、青光眼等。与现有技术相比,通过计算机对视网膜血管进行诊断和治疗,关键在于提取血管信息。此外,视网膜血管的特征与多种疾病相关,血管分割对糖尿病视网膜病变和青光眼的诊断具有重要意义。
2. 相关研究回顾
过往研究涵盖了多个方面。有研究提出对微动脉瘤、荧光血管造影和彩色照片中红点的评估;也有针对视网膜血管自动分割的研究,旨在将图像中的每个像素分类为血管或非血管;还有对共面眼底图像处理技术用于光学相干断层扫描的评估,以及对视网膜血管网络临床评估、病变识别和视网膜疾病自动诊断技术的关注。
此外,一些研究致力于分析、审查和分类各种血管提取算法,通过公开数据集对算法性能进行评估,包括真匹配和假匹配的阳性率、准确率、灵敏度、特异性和ROC曲线下面积等指标。还有研究提出了视网膜血管提取的方法,如使用各向同性扩散滤波恢复血管结构线,并通过四维线追踪确定血管体积。
3. 深度学习模型
3.1 卷积神经网络(CNN)
CNN非常适合处理分类问题,尤其在图像处理中表现出色。它由四个部分组成:
-
超级会员免费看
订阅专栏 解锁全文
850

被折叠的 条评论
为什么被折叠?



