在Google的GPU上永远免费训练您的机器学习模型

本文介绍如何利用Google Colab的免费GPU资源高效地训练机器学习模型。通过简单的步骤,用户可以在不花费额外成本的情况下,获得比普通笔记本电脑快40倍的训练速度。文章详细介绍了如何设置Colab环境并运行包含GPU加速的Jupyter笔记本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

训练你的模型是解决机器学习中耗费时间和成本最高的部分。 在GPU上训练您的模型可以让您的速度提升接近40倍,需要2天时间并将其转化为几个小时。 但是,这通常会花钱购买您的钱包。

有一天我偶然发现了一个叫做Google Colab的伟大工具。 我将Colab描述为Jupyter笔记本的谷歌文档。 Colab旨在成为机器学习项目合作的教育和研究工具。 伟大的部分是,它永远是完全免费的

没有设置使用它。 我甚至不需要登录。 (我已经登录到我的谷歌帐户)

最好的部分是,你可以无限供应12小时连续访问k80 GPU,这是非常强大的功能。 (12小时后你会断开连接,但你可以多次使用它)

我希望我们的重点是针对GPU和Colab的特定训练,因此笔记本电脑非常光秃秃的骨头。

第一步是下载笔记本电脑 (或您选择的其他笔记本电脑)

然后,转到Google Colab ,登录到您的Google帐户(或者创建一个,如果您以某种方式将它变成现实,而没有一个)

选择File > Upload notebook...

上传您下载的笔记本电脑:

选择Runtime > Change runtime type

然后选择GPU

现在你应该可以运行你的笔记本电脑了。 唯一的区别是最后的最后一部分。 如果你想通过浏览器下载你的模型或任何其他文件,你可以使用他们的Python库:

 从google.colab导入文件 
  files.download( “PATH / TO / FILE”) 

最后的想法

这是一篇相当短的文章,但希望它结束​​了在可怜的小旧笔记本电脑上每天数次训练模型或在AWS账单上丢弃大量

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值