【论文阅读】Dynamic Graph CNN for Learning on Point Clouds

该研究介绍了一种新的神经网络模块EdgeConv,用于基于CNN的点云处理,特别强调了它在恢复拓扑结构和学习全局形状特征方面的优势。实验结果显示在ModelNet40、ShapeNetPart和S3DIS等标准基准上的出色性能。
摘要由CSDN通过智能技术生成

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., & Solomon, J. M. (2019). Dynamic Graph CNN for Learning on Point Clouds. ACM Transactions on Graphics, 38(5), 1–12. https://doi.org/10.1145/3326362

点云提供了一种灵活的几何表示,适用于计算机图形学中无数的应用;它们还组成了大多数3D数据采集设备的原始输出。尽管在图形学和计算机视觉领域长期以来一直提出了关于点云的手工设计特征,但最近卷积神经网络(CNN)在图像分析方面取得的巨大成功表明,将CNN的见解应用于点云领域具有很大价值。由于点云本质上缺乏拓扑信息,因此设计一个能够恢复拓扑结构的模型可以丰富点云的表示能力。为此,我们提出了一种新的神经网络模块,名为EdgeConv,适用于基于CNN的点云的高级任务,包括分类和分割。EdgeConv在网络的每一层上动态地作用于计算得到的图上。它是可微的,可以插入到现有的架构中。与在外部空间操作或独立处理每个点的现有模块相比,EdgeConv具有几个吸引人的性质:它包含局部邻域信息;它可以堆叠应用以学习全局形状属性;在多层系统中,特征空间中的亲和力捕捉了原始嵌入中的潜在长距离语义特征。我们在标准基准测试上展示了我们模型的性能,包括ModelNet40、ShapeNetPart和S3DIS。

在这里插入图片描述
图1. 使用提出的神经网络进行点云分割。底部:示意神经网络架构。顶部:在网络的不同层次上产生的特征空间的结构,可视化为从红点到所有其他点的距离(从左到右显示输入和层次1-3;最右边的图显示了生成的分割)。请注意,深层中的特征空间结构捕捉到在原始输入空间中距离较远的语义上相似的结构,如机翼、机身或涡轮机。

在这里插入图片描述
图2. 左侧:计算边缘特征eij(顶部)从点对xi和xj(底部)中。在此示例中,hΘ()通过使用全连接层进行实例化,并且其关联权重是可学习的参数。右侧:EdgeConv 操作。EdgeConv的输出是通过聚合与从每个连接顶点发出的所有边缘相关联的边缘特征来计算的。
在这里插入图片描述

  • 9
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知为

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值