元学习——扫一眼就会了的机器你害怕吗

导读

其实,直到目前为止,百度百科上并没有记录元学习这个词条,就连维基百科也没有。所以对于这个词条的定义也没有什么官方不官方,你认为是这样就是这样。但是呢,普遍将元学习定义为让机器学习如何学习,你也可以用英文显得自己高端一点:learn to learning

出现的意义

由于并没有正式的定义,百度百科和维基百科上都查不到,所以就不说明了。这里就直接列出其他学习方法并说明优缺点。

基于统计学的机器学习

不知道大家现在是什么状况,但是湖北地区的计算机本科生从2017级本科生开始不准使用xx系统作为毕业设计蒙混过关了,得用算法。不过,相信大部分也只是单纯的使用一些算法针对大量的数据进行一定程度的学习。但是问题也随之产生了。

有些算法对噪音相当敏感,比如知识图谱线性回归等等。虽然对于毕业设计没什么影响,但是实际使用的时候可行性极低。就像是针对猫娘的病理分析,实验数据中不可能出现两只甚至以上身体状况完全相同的猫娘,大量的差异性导致了不同症状的产生,噪音也相当大。

不过噪音大也就算了,多想想办法,噪音总是会减少的。为什么不是消除噪音?因为任何数据集的噪音情况不可能被完全列出,运气好的话在将来的不久就会发现新的噪音,运气不好的话几百年才会发现。

最恐怖的地方就是,如果要使用机器学习来判断病情,那就需要大量的临床数据。假设又来了一次全新的新冠疫情,在完全没有临床数据的情况下是没有办法进行分析的,甚至只能牺牲更多的人来进行分析,因为极少个体没有办法涵盖广大群体,哪怕你自认为自己有足够高的代表性。

深度学习

深度学习作为一个黑匣子,由于其高度的自动化特性很受欢迎,在计算机视觉、音媒体等等地方有着很广泛的用处,广泛到极其内卷的今天。

但是深度学习也有很致命的缺点:

  • 需要大量的样本不停的学习
  • 需要人为定义标签,并完全根据标签进行学习

这就是说,深度学习也同样需要大量的数据。这也让深度学习在跑起来前需要大量的样本库。对于图片、视频等占用空间相当大的多媒体文件来说,这对服务器的压力是相当大的。

更让人头大的是,大量的样本标记需要人为进行。就像是超市上货一样,大量的啤酒饮料矿泉水都需要超市的货架管理员一瓶瓶挨个摆上去。而样本处理的工作量远大于货架管理员,因为是在几天时间内使用爬虫爬取上十万甚至上百万的样本并人工标记。光是想想就头大。

不仅如此,机器在使用深度学习的时候是完全听从这些人为的标记进行学习。如果,你在标记的时候不小心看错了,把小丸子的爷爷认成了一拳超人埼玉,那学习出来的模型将会是相当的奇葩。虽然这是一个玩笑话但你真的不会在标记了几万样本之后眼花手抖

在这里插入图片描述

在这里点名批评百度。虽然不知道内部算法是不是深度学习,但是很明显能够看出来相当大一部分图片只是单纯看很狭窄一部分的图像特征就进行分类,往往这些类别就相当莫名其妙,一些图片就被莫名其妙分配到了完全不相干的类别上。

强化学习

强化学习最大的特点就是,只需要把智能体丢到环境中就好了。不管是虚拟的环境还是真是的环境,只要智能体在环境中,并且给他一个目标,这个智能体就会像人一样开始慢慢学习,慢慢试探,最终达到目标。这就比起深度学习来说更为自动化。

但是这也是有一点点不足。强化学习本质上还是在构建决策树,这让一切又回到了机器学习,也就是说还是需要大量的数据。虽然需要人做的工作只是把智能体放在环境中,但是剩下的事情还是在环境中通过大量的模拟进行自动标记、自动数据采集,到了最后还是使用机器学习。

为什么要提出元学习

你可能会问,以上那些技术不都还有很多用处吗。确实,这里并不是要强调上述算法都已经达不到需求要淘汰掉了,而是在一些极端环境下还是需要更多更好的算法。在【转自CSDN】中科大教授吴锋:多智能体的分布式在线决策 | 腾讯AI Lab学术论坛演讲的文章中就提到了使用强化学习的方法让AI控制王者荣耀的角色进行对抗。不得不说,现在训练的成果虽然没有达到相当高的地步,但是作为起步已经相当可观了。只是,在学习的过程中也明显发现了缺点:算力跟不上。腾讯的AI实验室使用的是分布式的、分层的、基于强化学习的多智能体规划算法,针对这样一个相对稳定很容易完全熟悉的非智能环境,并且是针对动作相对单一协同方和对抗方都较少的环境中,依然感觉相当吃力。

再看看现在所有国家一直在想办法攻关的机器人足球赛,虽然非智能环境也相对简单,但是动作更为复杂,更包含长传短传外弧线内弧线踩单车马赛回旋盘带回传打门假动作扑救等等一系列常规动作以及肘部阻挡身体对抗等等一系列游离在违规边缘的危险动作,甚至还有战术手球推搡等等一系列恶意违规动作,每种动作都对应了不同的博弈或者对策,更何况场上还有 22 22 22个玩家同时在线。这么一想,是不是算力完全不够用?估计得把天河拉过来了。

关键

那么,元学习最关注的是什么呢?还是最开始的,学会如何学习

这下面就有一个few-shot,当然你也可以叫做low-shot,这两个都是一样的,都是说在样本集少的环境下进行学习

当然,强化学习也是在初始数据相当少甚至是没有的情况下学习的,而元学习则是像人一样去学习如何找出事物间的异同点

风语轻羽在B站发布的Meta Learning(元学习)这部视频里的讲解很贴切:

假设你有一个写好的模型,然后你找到了很多猫的图片,一对一对地作为输入进行学习,让模型知道:这两张照片是一样的

在这里插入图片描述

学习成果很不错,输入新的一对猫猫图片也会成功识别。

现在,突发奇想的你又给模型找了一对猫娘图,模型也能识别出来吗?

在这里插入图片描述

结果是可以的

如果模型是深度学习,那么输入了猫猫图就只能识别猫猫,因为深度学习只会识别出单纯的猫猫模式,然后新的图片会按照学习出来的模式进行识别。但是出现了新的图片就出现了奇奇怪怪的现象。

而元学习就会根据这一对一对的图片学习出应该如何识别两张相似的图片,哪怕是输入两张狗狗、两张人脸,都能给你识别出来。

知识迁移?

看到这里,你是不是觉得,元学习和迁移学习相当相似?其实还是有很大区别的。

实际上,迁移学习并不是将先验知识搬到新的领域上,而是直接用以前的模型微调参数然后重新把新领域的输入放进去学习。相比单纯的深度学习会稍微进步一点,因为不需要重新开始,相当于从 0 0 0 100 100 100;但还是需要重新调参,相当于从 1 1 1 100 100 100,差别并没有很大。

而元学习则完全是使用同样的模型对完全不同的领域进行学习。就像是能够举一反三的学生一样,做对一次之后这一系列的题目就都会做了,是从 99 99 99 100 100 100,唯一剩下的就是人为给定新的参数集而已。

说的学术一点的话,就是这样:

从目标上看元学习和迁移学习并无本质区分都是增加学习器在多任务的范化能力, 但元学习更偏重于任何和数据的双重采样, 任务和数据一样是需要采样的,而学习到的F(x)可以帮助在未见过的任务f(x)里迅速建立mapping。 而迁移学习更多是指从一个任务到其它任务的能力迁移,不太强调任务空间的概念

——摘自知乎用户许铁-巡洋舰科技对于问题“元学习(Meta Learning)与迁移学习(Transfer Learning)的区别联系是什么?”的回答。

总结

元学习看起来对现在的工业生产一点用都没有,但元学习的出现让我们在强人工智能上更进了一步,让我们在以后的工业发展中有更多的可能。另外,现在小批量、个性化的生产模式的提出,让生产的需求更加复杂。如果工厂已经有了一种成熟的生产工艺,元学习不仅能够学会原来成熟工艺的学习,还能够学会邻近工艺的学习,一旦有需求就能马上投入生产。这也是相当美好的一个方向不是么?

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ordinary_brony

代码滞销,救救码农

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值