概率论与数理统计 第七章 参数估计

在这里插入图片描述

一、点估计

1. 矩估计法

基本思想:用样本矩代替总体矩,建立方程求解参数估计值。

步骤

  1. 计算总体矩(包含未知参数)
  2. 计算样本矩
  3. 令总体矩等于样本矩,建立方程
  4. 解方程得到参数的矩估计量

例题:设总体 XXX 服从参数为 λ\lambdaλ 的指数分布,概率密度函数为:

f(x;λ)=λe−λx,x>0f(x;\lambda) = \lambda e^{-\lambda x}, \quad x > 0f(x;λ)=λeλx,x>0

λ\lambdaλ 的矩估计量。


总体一阶矩:E(X)=1λE(X) = \frac{1}{\lambda}E(X)=λ1
样本一阶矩:Xˉ=1n∑i=1nXi\bar{X} = \frac{1}{n}\sum_{i=1}^n X_iXˉ=n1i=1nXi
E(X)=XˉE(X) = \bar{X}E(X)=Xˉ,即 1λ=Xˉ\frac{1}{\lambda} = \bar{X}λ1=Xˉ
解得矩估计量:λ^=1Xˉ\hat{\lambda} = \frac{1}{\bar{X}}λ^=Xˉ1

2. 最大似然估计法

基本思想:选择使样本出现概率最大的参数值作为估计值。

步骤

  1. 写出似然函数 L(θ)=∏i=1nf(xi;θ)L(\theta) = \prod_{i=1}^n f(x_i;\theta)L(θ)=i=1nf(xi;θ)
  2. 取对数得 ln⁡L(θ)\ln L(\theta)lnL(θ)
  3. θ\thetaθ 求导并令导数为0
  4. 解方程得到最大似然估计量

例题:设 X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,,Xn 是来自正态总体 N(μ,σ2)N(\mu,\sigma^2)N(μ,σ2) 的样本,求 μ\muμσ2\sigma^2σ2 的最大似然估计。


似然函数:

L(μ,σ2)=∏i=1n12πσ2e−(xi−μ)22σ2=(2πσ2)−n2e−12σ2∑i=1n(xi−μ)2L(\mu,\sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} = (2\pi\sigma^2)^{-\frac{n}{2}}e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i-\mu)^2}L(μ,σ2)=i=1n2πσ21e2σ2(xiμ)2=(2πσ2)2ne2σ21i=1n(xiμ)2

取对数:

ln⁡L(μ,σ2)=−n2ln⁡(2π)−n2ln⁡σ2−12σ2∑i=1n(xi−μ)2\ln L(\mu,\sigma^2) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i-\mu)^2lnL(μ,σ2)=2nln(2π)2nlnσ22σ21i=1n(xiμ)2

分别对 μ\muμσ2\sigma^2σ2 求偏导:

∂ln⁡L∂μ=1σ2∑i=1n(xi−μ)=0\frac{\partial \ln L}{\partial \mu} = \frac{1}{\sigma^2}\sum_{i=1}^n (x_i-\mu) = 0μlnL=σ21i=1n(xiμ)=0

∂ln⁡L∂σ2=−n2σ2+12σ4∑i=1n(xi−μ)2=0\frac{\partial \ln L}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4}\sum_{i=1}^n (x_i-\mu)^2 = 0σ2lnL=2σ2n+2σ41i=1n(xiμ)2=0

解得:

μ^=Xˉ,σ^2=1n∑i=1n(Xi−Xˉ)2\hat{\mu} = \bar{X}, \quad \hat{\sigma}^2 = \frac{1}{n}\sum_{i=1}^n (X_i-\bar{X})^2μ^=Xˉ,σ^2=n1i=1n(XiXˉ)2

二、估计量的评选标准

1. 无偏性

E(θ^)=θE(\hat{\theta}) = \thetaE(θ^)=θ,则称 θ^\hat{\theta}θ^θ\thetaθ 的无偏估计。

例题:证明样本均值 Xˉ\bar{X}Xˉ 是总体均值 μ\muμ 的无偏估计。
证明:E(Xˉ)=E(1n∑i=1nXi)=1n∑i=1nE(Xi)=μE(\bar{X}) = E\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n}\sum_{i=1}^n E(X_i) = \muE(Xˉ)=E(n1i=1nXi)=n1i=1nE(Xi)=μ

2. 有效性

θ^1\hat{\theta}_1θ^1θ^2\hat{\theta}_2θ^2 都是 θ\thetaθ 的无偏估计,若 D(θ^1)<D(θ^2)D(\hat{\theta}_1) < D(\hat{\theta}_2)D(θ^1)<D(θ^2),则称 θ^1\hat{\theta}_1θ^1θ^2\hat{\theta}_2θ^2 有效。

3. 相合性

lim⁡n→∞P(∣θ^n−θ∣<ε)=1\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| < \varepsilon) = 1limnP(θ^nθ<ε)=1 对任意 ε>0\varepsilon > 0ε>0 成立,则称 θ^n\hat{\theta}_nθ^nθ\thetaθ 的相合估计。

三、区间估计

1. 基本概念

置信区间:设 θ\thetaθ 是总体参数,X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,,Xn 是样本,若存在两个统计量 θ^1\hat{\theta}_1θ^1θ^2\hat{\theta}_2θ^2,使得:

P(θ^1<θ<θ^2)=1−αP(\hat{\theta}_1 < \theta < \hat{\theta}_2) = 1 - \alphaP(θ^1<θ<θ^2)=1α

则称 (θ^1,θ^2)(\hat{\theta}_1, \hat{\theta}_2)(θ^1,θ^2)θ\thetaθ 的置信水平为 1−α1-\alpha1α 的置信区间。

置信水平1−α1-\alpha1α,通常取0.95、0.99等。

2. (0-1)分布参数的区间估计

X∼B(1,p)X \sim B(1,p)XB(1,p)X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,,Xn 为样本,样本均值 Xˉ=1n∑i=1nXi\bar{X} = \frac{1}{n}\sum_{i=1}^n X_iXˉ=n1i=1nXi
nnn 充分大时,ppp 的置信水平为 1−α1-\alpha1α 的近似置信区间为:

(Xˉ−zα/2Xˉ(1−Xˉ)n,Xˉ+zα/2Xˉ(1−Xˉ)n)\left(\bar{X} - z_{\alpha/2}\sqrt{\frac{\bar{X}(1-\bar{X})}{n}}, \bar{X} + z_{\alpha/2}\sqrt{\frac{\bar{X}(1-\bar{X})}{n}}\right)(Xˉzα/2nXˉ(1Xˉ),Xˉ+zα/2nXˉ(1Xˉ))

其中 zα/2z_{\alpha/2}zα/2 是标准正态分布的上 α/2\alpha/2α/2 分位数。

四、正态总体的均值和方差的置信区间

1. 单个正态总体均值的置信区间

(1) σ2\sigma^2σ2 已知时

(Xˉ−zα/2σn,Xˉ+zα/2σn)\left(\bar{X} - z_{\alpha/2}\frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)(Xˉzα/2nσ,Xˉ+zα/2nσ)

(2) σ2\sigma^2σ2 未知时

(Xˉ−tα/2(n−1)Sn,Xˉ+tα/2(n−1)Sn)\left(\bar{X} - t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}, \bar{X} + t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}\right)(Xˉtα/2(n1)nS,Xˉ+tα/2(n1)nS)

其中 S2=1n−1∑i=1n(Xi−Xˉ)2S^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i-\bar{X})^2S2=n11i=1n(XiXˉ)2tα/2(n−1)t_{\alpha/2}(n-1)tα/2(n1)ttt 分布的上 α/2\alpha/2α/2 分位数。

2. 单个正态总体方差的置信区间

((n−1)S2χα/22(n−1),(n−1)S2χ1−α/22(n−1))\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right)(χα/22(n1)(n1)S2,χ1α/22(n1)(n1)S2)

其中 χα/22(n−1)\chi^2_{\alpha/2}(n-1)χα/22(n1)χ2\chi^2χ2 分布的上 α/2\alpha/2α/2 分位数。

例题:从正态总体中抽取容量为16的样本,测得样本均值 xˉ=50\bar{x} = 50xˉ=50,样本标准差 s=8s = 8s=8,求总体均值 μ\muμ 的95%置信区间。
α=0.05\alpha = 0.05α=0.05t0.025(15)=2.131t_{0.025}(15) = 2.131t0.025(15)=2.131
置信区间为:

(50−2.131×816,50+2.131×816)=(45.738,54.262)\left(50 - 2.131\times\frac{8}{\sqrt{16}}, 50 + 2.131\times\frac{8}{\sqrt{16}}\right) = (45.738, 54.262)(502.131×168,50+2.131×168)=(45.738,54.262)

五、单侧置信区间

1. 基本概念

单侧置信区间:只关心参数的上限或下限时的区间估计。

  • 单侧置信下限:满足 P(θ>θ^L)=1−αP(\theta > \hat{\theta}_L) = 1-\alphaP(θ>θ^L)=1αθ^L\hat{\theta}_Lθ^L
  • 单侧置信上限:满足 P(θ<θ^U)=1−αP(\theta < \hat{\theta}_U) = 1-\alphaP(θ<θ^U)=1αθ^U\hat{\theta}_Uθ^U

2. 正态总体均值的单侧置信区间

(1) σ2\sigma^2σ2 已知时

  • 单侧置信下限:Xˉ−zασn\bar{X} - z_\alpha\frac{\sigma}{\sqrt{n}}Xˉzαnσ
  • 单侧置信上限:Xˉ+zασn\bar{X} + z_\alpha\frac{\sigma}{\sqrt{n}}Xˉ+zαnσ

(2) σ2\sigma^2σ2 未知时

  • 单侧置信下限:Xˉ−tα(n−1)Sn\bar{X} - t_\alpha(n-1)\frac{S}{\sqrt{n}}Xˉtα(n1)nS
  • 单侧置信上限:Xˉ+tα(n−1)Sn\bar{X} + t_\alpha(n-1)\frac{S}{\sqrt{n}}Xˉ+tα(n1)nS

例题:某批电子元件寿命服从正态分布,现抽取10个测得平均寿命 xˉ=1200\bar{x} = 1200xˉ=1200 小时,标准差 s=100s = 100s=100 小时,求平均寿命的95%单侧置信下限。
t0.05(9)=1.833t_{0.05}(9) = 1.833t0.05(9)=1.833
单侧置信下限:1200−1.833×10010=1200−57.98=1142.021200 - 1.833\times\frac{100}{\sqrt{10}} = 1200 - 57.98 = 1142.0212001.833×10100=120057.98=1142.02 小时

历年考题分析

考题1:设总体 XXX 服从参数为 λ\lambdaλ 的泊松分布,X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,,Xn 是样本,求 λ\lambdaλ 的矩估计量和最大似然估计量。

矩估计:E(X)=λ=XˉE(X) = \lambda = \bar{X}E(X)=λ=Xˉ,故 λ^=Xˉ\hat{\lambda} = \bar{X}λ^=Xˉ
最大似然估计:
似然函数 L(λ)=∏i=1nλxie−λxi!L(\lambda) = \prod_{i=1}^n \frac{\lambda^{x_i}e^{-\lambda}}{x_i!}L(λ)=i=1nxi!λxieλ

ln⁡L(λ)=∑i=1nxiln⁡λ−nλ−∑i=1nln⁡(xi!)\ln L(\lambda) = \sum_{i=1}^n x_i\ln\lambda - n\lambda - \sum_{i=1}^n \ln(x_i!)lnL(λ)=i=1nxilnλi=1nln(xi!)

dln⁡Ldλ=∑xiλ−n=0\frac{d\ln L}{d\lambda} = \frac{\sum x_i}{\lambda} - n = 0dλdlnL=λxin=0

解得 λ^=Xˉ\hat{\lambda} = \bar{X}λ^=Xˉ

考题2:从正态总体 N(μ,4)N(\mu,4)N(μ,4) 中抽取容量为9的样本,测得样本均值 xˉ=5\bar{x} = 5xˉ=5,求 μ\muμ 的95%置信区间。
z0.025=1.96z_{0.025} = 1.96z0.025=1.96
置信区间:(5−1.96×23,5+1.96×23)=(3.693,6.307)\left(5 - 1.96\times\frac{2}{3}, 5 + 1.96\times\frac{2}{3}\right) = (3.693, 6.307)(51.96×32,5+1.96×32)=(3.693,6.307)

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oscar999

送以玫瑰,手留余香

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值