jupyter notebook matplotlib绘制动态图并显示在notebook中

有些时候matplotlib 的绘图没法显示在notebook中,或者显示不了。这与backend有关。

首先启动你的notebook,输入

%pylab

查看你的matplotlib后端,我的输出为:

Qt5Agg

这是后端的渲染方式,使用的是qt5渲染。激活方式为在绘图之前插入代码段:

%matplotlib qt5

这样就能显示出图,但是是显示在notebook之外的,如果我使用%matplotlib inline,图的显示并不正常。我也不知道为什么,,,,,,,,,,,,,

如果你输出的后端为其他类型,建议查看下面的资料,直接输入对应的绘图激活方式。

matplotlib 常用backend

### 使用 MatplotlibJupyter Notebook绘制雷达图 要在 Jupyter Notebook 中使用 Matplotlib 绘制雷达图,可以按照以下方法实现。以下是完整的代码示例以及解释: #### 雷达图的定义与用途 雷达图是一种用于多维数据可视化的工具,适用于展示多个变量之间的关系及其相对重要性[^3]。 #### 示例代码:绘制雷达图 ```python import numpy as np import matplotlib.pyplot as plt # 数据准备 labels = ['A', 'B', 'C', 'D', 'E'] stats = [4, 7, 8, 5, 6] # 计算角度以便均匀分布标签 angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist() stats += stats[:1] # 将第一个值复制到最后,形成闭环 angles += angles[:1] # 同样处理角度列表 # 创建画布和极坐标系子图 fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True)) # 绘制折线填充颜色 ax.plot(angles, stats, color='orange', linewidth=2, linestyle='solid') ax.fill(angles, stats, color='orange', alpha=0.25) # 添加标签 ax.set_theta_offset(np.pi / 2) # 偏移起始位置到顶部 ax.set_theta_direction(-1) # 反转方向为顺时针 plt.xticks(angles[:-1], labels) # 设置刻度标签 # 设置径向网格的最大值 ax.set_rlabel_position(30) ax.set_ylim(0, 10) # 显示图像 plt.show() ``` #### 代码说明 1. **数据准备**:`labels` 是各个维度的名称,而 `stats` 则是对应的数值。 2. **计算角度**:通过 `np.linspace` 函数生成均匀的角度数组,将其转换为列表形式以方便后续操作。 3. **闭合路径**:为了使雷达图形成封闭区域,需将首尾相连。 4. **绘图参数**:利用 `polar=True` 参数创建极坐标系子图;通过 `plot` 方法绘制线条,`fill` 方法填充颜色。 5. **样式调整**:设置了偏移量 (`set_theta_offset`) 和旋转方向 (`set_theta_direction`) 来优化视觉效果。 此代码展示了如何在 Jupyter Notebook 中使用 Matplotlib 构建基本的雷达图[^4]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值