NLP词嵌入Word embedding实战项目

1. 将文本表示为数字

机器学习模型以向量(数字数组)作为输入,在处理文本时,我们必须首先想出一个策略,将字符串转换为数字(或将文本“向量化”),然后再将其提供给模型。在本节中,我们将研究三种策略。

1.1. 独热编码(One-hot encodings)

首先,我们可以用“one-hot”对词汇的每个单词进行编码,想想“the cat sat on the mat”这句话,这个句子中的词汇(或独特的单词)是(cat,mat,on,The),为了表示每个单词,我们将创建一个长度等于词汇表的零向量,然后再对应单词的索引中放置一个1。这种方法如下图所示:

2. 利用 Embedding 层学习词嵌入

from __future__ import absolute_import, division, print_function, unicode_literals

# !pip install tf-nightly-2.0-preview
import tensorflow as tf

from tensorflow import keras
from tensorflow.keras import layers

# Embedding层至少需要两个参数: 
# 词汇表中可能的单词数量,这里是1000(1+最大单词索引); 
# embeddings的维数,这里是32.。
embedding_layer = layers.Embedding(1000, 32)

输入:(samples, sequence_length) (batch,序列长度)

输出:(samples, sequence_length, embedding_dimensionality)(batch,序列长度,维数)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值