来自于《Predicting station-level hourly demand in a large-scale bike-
sharing network
文章目录
-
- 1. A hub location inventory model for bicycle sharing system design: formulation and solution
- 2. The station-free sharing bike demand forecasting with a deep learning approach and large-scale datasets.
- 3. Dynamic cluster-based over-demand prediction in bike sharing systems
- 4. A modeling framework for the dynamic management of free-floating bike-sharing systems
- 5.Convolutional neural networks on graphs with fast localized spectral filtering
-
- 6. Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto
- 7. Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies
- 8. Urban cycles and mobility patterns: Exploring and predicting trends in a bicycle-based public transport system
1. A hub location inventory model for bicycle sharing system design: formulation and solution
摘要:
这项研究解决了自行车共享系统的战略设计问题,包括自行车库存的考虑。该问题被表述为枢纽位置库存模型。考虑的关键设计决策是:系统中自行车站的数量和位置,自行车站之间的自行车道的创建,起点和终点之间用户路径的选择,以及共享单车的库存水平。自行车站。设计决策是在考虑总成本和服务水平(通过取车租赁站的租赁请求的可用率以及起点和目的地的覆盖范围来衡量)的情况下做出的。该系统的优化设计需要综合考虑用户的出行成本、自行车库存成本和自行车站和自行车道的设施成本以及服务水平。本研究的目的是创建一个提供这种综合视图的正式模型,并开发在实际情况下获得设计变量解决方案的方法。问题的复杂性排除了现实大小实例的优化问题的精确解,因此我们提出了一种启发式方法来有效地找到接近最优的解。在可以枚举的测试问题中,启发式解决方案在 2% 以内是最佳的。最后,创建了一个数值例子来说明模型和提出的求解算法。
被引:自行车共享也有助于解决第一英里和最后一英里的问题(J.-R.Lin等人,2013年)
bib:
@article{Lin2013A,
title={A hub location inventory model for bicycle sharing system design: Formulation and solution},
author={Lin and J. and R. and Yang and T. and H. and Chang and Y. and C.},
journal={Computers & Industrial Engineering},
year={2013},
}
2. The station-free sharing bike demand forecasting with a deep learning approach and large-scale datasets.
摘要:
无站共享单车是2017年初在中国大规模部署的一种新型共享交通模式,该系统无需停靠站,即可将共享单车停放在任何合适的地方。本研究旨在使用深度学习方法开发无站点共享单车的动态需求预测模型。首先进行时空分析以研究无站点共享单车的移动模式。结果表明共享单车出行的空间和时间需求不平衡。然后开发了长短期记忆神经网络 (LSTM NNs) 来预测不同时间间隔(包括 10 分钟、15 分钟、20 分钟和 30 分钟间隔)在 TAZ 的自行车共享旅行产生和吸引力。验证结果表明,开发的 LSTM 神经网络在不同时间间隔的旅行产品和景点方面具有合理的良好预测精度。还开发了统计模型和最近开发的机器学习方法来对 LSTM NN 进行基准测试。比较结果表明,LSTM NNs 在不同时间间隔内提供比传统统计模型和先进机器学习方法更好的预测精度。开发的 LSTM 神经网络可用于预测 TAZ 共享单车出行的流入和流出之间的差距,这为重新平衡系统中的共享单车提供了有用的信息
被引:
非码头BSS旨在为旅行者提供更多的自由和灵活性,以方便他们进出和使用自行车。与船坞式BSS不同,车手可以随意将自行车停放在任何地方(Xu等人,2018年)。
bib:
@article{2018The,
title={The station-free sharing bike demand forecasting with a deep learning approach and large-scale datasets},
author={ Xu, C. and Ji, J. and Liu, P. },
journal={Transportation Research Part C Emerging Technologies},
volume={95},
pages={47-60},
year={2018},
}