【索引】图神经论文之GCN(持更)

GNN中三种基础神经网络:GCN, GAT, GraphSAGE.代表了3种聚合的思想。

  • GCN是通过已有的邻居关系,(加权)聚合自身和邻居节点的特征。
  • GAT是通过注意力机制,(自助式)获得节点与节点之间的接近性,从而解决节点的分类和链接的问题。
  • GraphSAGE是通过(有偏好)随机游走的方式,将图结构转化为线性表示。

这是我的个人理解(不权威)。然随着图神经网络的快速发展,在图神经网络种添加各种组件、搭建新结构或着引入新方法等越来越多,逐渐令人眼花缭乱。特此,在这里整理相关论文,加以梳理,使脉络清晰。提醒:这里的论文大多涉及交通领域。

一、基础的GCN

  • GCN的代码

含GCN的文章

简称文章作用备注
Diffusion convolutional recurrent neural network: Data-driven traffic forecasting扩散图卷积
STGCNSpatio-temporal graph convolutional networks: A deep learning framework for traffic forecastingGCN捕捉空间信息,门控捕捉时间信息我的《代码分析文集》
Dynamic spatiotemporal graph convolutional neural networks for traffic data imputation with complex missing patterns动态图学习?原文

二、MGCN

简称文章作用备注
CAFMGCNCross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction捕捉3个时间段的数据,捕捉3个不同语义的邻接矩阵,然后使用T-atten和S-atten交叉捕捉信息并融合只有data,No code😢
Joint predictions of multi-modal ride-hailingdemands: A deep multi-task multi-graph learning-based approach原文

三、含时空信息的GCN

A、模型的空间结构

B、模型的时间结构

C、模型的时空同步结构

四、融合结构

A、数据的信息融合

B、矩阵的融合

五、门控结构

六、预测问题种类

A、多步预测

简称文章作用备注
Deep spatial–temporal sequence modeling for multi-step passenger demand prediction使用的输入数据为历史需求+气象数据+时间元,预定义矩阵和自适应矩阵搭建的GCN直接合并。采用encoder-decoder结构。decoder是LSTM并用于进行多步预测。我的博文

B、短期预测

C、动态预测

、损失函数

A、常用的损失函数介绍

MSE

M A E = 1 n ∑ i = 1 n ∣ y i ^ − y i ∣ MAE=\frac{1}{n}\sum_{i=1}^n \lvert \hat{y_i}-y_i\rvert MAE=n1i=1nyi^yi

RMSE

R M S E = 1 n ∑ i = 1 n ( y i ^ − y i ) RMSE=\sqrt{\frac{1}{n}\sum_{i=1}^n (\hat{y_i}-y_i)} RMSE=n1i=1n(yi^yi)

MAPE

M A P E = 1 n ∑ i = 1 n ∣ y i ^ − y i y i ∣ MAPE=\frac{1}{n}\sum_{i=1}^n \lvert \frac{\hat{y_i}-y_i}{y_i}\rvert MAPE=n1i=1nyiyi^yi

sMAPE

s M A P E = 200 n ∑ i = 1 n ∣ x i − y i x i + y i ∣ sMAPE=\frac{200}{n}\sum_{i=1}^{n}\lvert \frac{x_i-y_i}{x_i+y_i} \rvert sMAPE=n200i=1nxi+yixiyi

B、论文中的损失函数盘点

论文名称简称损失函数备注
Deep learning in the COVID-19 epidemic: A deep model for urban traffic revitalization indexDeepTRIMSE\RMSE\MAPE我博
Dynamic Spatiotemporal Graph Convolutional Neural Networks for Traffic Data Imputation with Complex Missing PatternsDSTGCNMAE\RMSE我博
Adaptive Multi-channel Graph ConvolutionalAM-GCNACC\F1我博
A deep-learning model for urban traffic flow prediction with traffic events mined from twitterMAE\RMSE\sMAPE我博
Meta Graph Transformer: A Novel Framework for Spatial–Temporal Traffic PredictionMGTRMSE\MAE\MAPE我博
Deep spatial–temporal sequence modeling for multi-step passenger demand predictionRMSE\MAE\MAPE我博
elf-attention based generative adversarial network for traffic flow predictionSATP-GANMAE\MSE\RMSE我博
Joint Demand Prediction for Multimodal Systems: A Multi-task Multi-relational Spatiotemporal Graph Neural Network ApproachST-MRGNNRMSE\MAE\R^2我博
Cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network for Traffic Flow PredictionCAFGCNMAE\RMSE\MAPE我博
Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand ForecastingST-MGCN
Bike Flow Prediction with Multi-Graph Convolutional NetworksMGCNRMSE我博
RedPacketBike: A Graph-Based Demand Modeling and Crowd-Driven Station Rebalancing Framework for Bike Sharing SystemsRMSE\MAE我博
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值