【GNN笔记】Dynamic Graph的分类(16)

视频链接:《图神经网络》
相关文章:


动态网络为网络建模和预测增加了新的维度-时间。
这个新的维度从根本上影响网络属性,使网络数据更强大地表示出来,进而提高使用此类数据的方法的预测能力。
在这里插入图片描述

A、Dynamic Graph Representations

在这里插入图片描述
参考知识:👍 优秀!!!

  1. 《论文导读 | 动态图上神经网络模型综述》,原文《Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey》介绍一篇关于动态图上的神经网络模型的综述,本篇综述的主要结构是根据动态图上进行表示学习过程的几个阶段(动态图表示、模型学习、模型预测)进行分别阐述。包括
  • 系统的探讨不同维度下的动态图分类方法以及各种方法下的数据表示格式
  • 针对不同类别的动态图归纳目前图表示学习的主流算法模型(encoding部分)
  • 分别讨论在预测阶段的主要方法,包括decoding, loss function, evaluation metrics等
  1. 《图神经网络前沿综述:动态图网络》,Katarzyna 主要关注复杂网络的动态和演化的分析与网络的结构和性质的建模。最近,她的团队将精力集中在利用机器学习和可预测性模型来研究动态复杂网络。综述可以分为以下几部分:
  • 动态网络的分类和表示;
  • 作为动态网络编码器的DGNN;
  • 动态网络表征的解码与结构预测:以链路预测为例

在这里插入图片描述

B. Link duration spectrum

在这里插入图片描述

C. Node dynamics

在这里插入图片描述

D. The dynamics network cube

在这里插入图片描述

E. 动态图网络算法

在这里插入图片描述


### 图神经网络 (GNN) 学习资源 对于希望深入了解图神经网络Graph Neural Networks, GNNs)的学习者来说,有多种高质量的教程、论文和技术博客可以作为参考资料。 #### 论文阅读 一些重要的研究工作奠定了现代GNN的基础。例如,《DeepWalk: Online Learning of Social Representations》探讨了如何通过随机游走的方式捕捉社交网络中的节点特征[^1];《node2vec: Scalable Feature Learning for Networks》则进一步扩展了这一思路,提出了更灵活的方法来生成节点嵌入表示;而《Semi-Supervised Classification with Graph Convolutional Networks》引入了一种基于卷积操作处理图形数据的新框架——GCN(Graph Convolutional Network),它能够有效地利用未标记的数据进行半监督分类任务。 #### 教程视频 除了学术文章外,在线教育平台也提供了许多易于理解的教学材料。比如B站上有一个名为“GNN从入门到精通”的系列课程,该课程由浅入深地讲解了有关GNN的知识点,并配有实际案例分析和编程练习[^3]。 #### 技术文档与笔记整理 为了帮助初学者更好地掌握理论概念并应用于实践当中,“【GNN】图神经网络学习小结and笔记汇总”这份总结性的资料非常有价值。这里不仅包含了对核心算法原理详尽解释的文字描述,还有配套代码实现供读者参考学习[^2]。 ```python import torch from torch_geometric.nn import GCNConv class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = GCNConv(dataset.num_node_features, 16) self.conv2 = GCNConv(16, dataset.num_classes) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index) x = F.relu(x) x = F.dropout(x, training=self.training) x = self.conv2(x, edge_index) return F.log_softmax(x, dim=1) ``` 上述Python代码片段展示了如何使用PyTorch Geometric库构建简单的两层GCN模型来进行节点分类预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值