Pytorch: conv2d、空洞卷积、maxpool2d、 ConvTranspose2d的输出特征图计算方式

本文详细介绍了PyTorch中卷积层(包括常规conv2d与空洞卷积)、maxpool2d、以及上采样ConvTranspose2d的操作原理和实例,展示了它们如何影响输入输出特征图尺寸。特别关注了padding、dilation和stride参数的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、conv2d

nn.Conv2d(in_dim, out_dim, kernel_size=3, stride=1, padding=1)

输入为(h1,w1),输出为(h2,w2),h2的计算如下,w2同理:

h2 = \frac{h1-kernelsize+2*padding}{stride}+1

pytorch中如果是3*3的卷积,且步长为1,此时padding设置为1,那么输出特征图大小和输入特征图大小相同。

2、空洞卷积——conv2d

nn.Conv2d(in_dim, out_dim, kernel_size=3, stride=1, padding=2, dilation=2)

与普通卷积的函数相同,只不过多了一个参数dilation需要设置,dilation设置空洞率。

假设输入为(h1,w1),输出为(h2,w2)

先计算感受野

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值