1、conv2d
nn.Conv2d(in_dim, out_dim, kernel_size=3, stride=1, padding=1)
输入为(h1,w1),输出为(h2,w2),h2的计算如下,w2同理:
pytorch中如果是3*3的卷积,且步长为1,此时padding设置为1,那么输出特征图大小和输入特征图大小相同。
2、空洞卷积——conv2d
nn.Conv2d(in_dim, out_dim, kernel_size=3, stride=1, padding=2, dilation=2)
与普通卷积的函数相同,只不过多了一个参数dilation需要设置,dilation设置空洞率。
假设输入为(h1,w1),输出为(h2,w2)
先计算感受野