机器人学可划分为机械操作、移动、计算机视觉和人工智能,本书介绍机械操作
按照刚体力学、分析力学、机构学和控制理论中的原理和定义对机器人运动学、动力学、控制和编程中的原理进行阐述。1-8:机械工程和数学;9-11:控制理论;12-13:计算机科学
1.概述
背景资料、基本思想和符号说明
1.1 背景
如果某个机械设备可以编程去完成多种不同的应用任务,一般认为是机器人。
1.2 操作臂的力学与控制
位置和姿态的描述
为了描述空间物体的位置和姿态 ,我们一般先在物体上设置一个坐标系(位姿),然后在某个参考坐标系中描述该位姿的位置和姿态。任一位姿我们都能用作研究物体位置和姿态的参考坐标系,因此经常将物体空间属性的描述从一个位姿变换到另一个位姿。
操作臂正运动学
运动学研究物体的运动的全部几何和时间特性,而不考虑引起这种运动的力。只研究位置、速度、加速度和位置变量对于时间或者其他变量的高阶微分。
连杆
关节 转动(关节角) 滑动/移动(关节偏移量)
自由度 操作臂中具有独立位置变量的数量。四杆机构只有一个自由度。
末端执行器:组成操作臂的运动链的自由端
工具坐标系:设置于末端执行器
基坐标系:设置于操作臂固定底座
正运动学:计算操作臂末端执行器位置和姿态的静态几何问题。即从关节空间描述到笛卡尔空间描述的操作臂位置表示。
操作臂逆运动学
问题是给定操作臂末端执行器的位置和姿态,计算所有可达给定位置和姿态的关节角。
速度、静力、奇异点
雅可比矩阵定义了从关节空间速度到笛卡尔空间速度的映射。在奇异点,映射是不可逆的。
动力学
轨迹生成
每个关节按照制指定的时间连续函数运动,轨迹生成就是如何准确计算这些运动函数。
样条函数表示通过一系列路径点的连续函数。
力控制
1.3 符号
- 大写字母、小写字母
- 左下标和左上标
- 右下标和右上标
- 三角函数 cos θ 1 \theta_1 θ1 = c θ 1 c \theta_1 cθ1 = c 1 c_1 c1
0 w 4 = 0 w 1 + 1 w 2 + 2 w 3 + 3 w 4 ^0w_4 = ^0w_1+^1w_2 +^2w_3 +^3w_4 0w4=0w1+1w2+2w3+3w4
只有在同一个坐标系系下才可以相加,否则不能相加。