机器学习入门之莺尾花训练

机器学习

1.sklearn

致谢
sklearn库介绍 -人类之奴-2022-知乎

1.1 莺尾花数据集

致谢
探索sklearn | 鸢尾花数据集 -薛定谔的小猫咪-2019-博客园
sklearn iris(鸢尾花)数据集应用 -狼之鸿-2018-博客园
笔记篇二:鸢尾花数据集分类 -一罐趣多多-2022-博客园

原始数据画图
from sklearn import datasets  # 引入数据集,sklearn包含众多数据集
from sklearn.model_selection import train_test_split  # 将数据分为测试集和训练集
from sklearn.neighbors import KNeighborsClassifier  # 利用邻近点方式训练数据
import matplotlib.pyplot as plt


def datasets_demo():
    ###引入数据###
    iris = datasets.load_iris()  # 引入iris鸢尾花数据,iris数据包含4个特征变量
    iris_X = iris.data  # 特征变量
    iris_y = iris.target  # 目标值
    # 利用train_test_split进行将训练集和测试集进行分开,test_size占30%
    X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y, test_size=0.25)
    # print(y_train)  # 我们看到训练数据的特征值分为3
    ###训练数据###
    # knn = KNeighborsClassifier()  # 引入训练方法
    # knn.fit(X_train, y_train)  # 进行填充测试数据进行训练
    ###预测数据###
    # print(knn.predict(X_test))  # 预测特征值

    # print(y_test)  # 真实特征值
    return iris


def plot_iris_projection(data, feature_names, target, x_index, y_index):
    for t, marker, c in zip([0, 1, 2], '>ox', 'rgb'):
        plt.scatter(data[target == t, x_index], data
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值