机器学习
1.sklearn
1.1 莺尾花数据集
致谢
探索sklearn | 鸢尾花数据集 -薛定谔的小猫咪-2019-博客园
sklearn iris(鸢尾花)数据集应用 -狼之鸿-2018-博客园
笔记篇二:鸢尾花数据集分类 -一罐趣多多-2022-博客园
原始数据画图
from sklearn import datasets # 引入数据集,sklearn包含众多数据集
from sklearn.model_selection import train_test_split # 将数据分为测试集和训练集
from sklearn.neighbors import KNeighborsClassifier # 利用邻近点方式训练数据
import matplotlib.pyplot as plt
def datasets_demo():
###引入数据###
iris = datasets.load_iris() # 引入iris鸢尾花数据,iris数据包含4个特征变量
iris_X = iris.data # 特征变量
iris_y = iris.target # 目标值
# 利用train_test_split进行将训练集和测试集进行分开,test_size占30%
X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y, test_size=0.25)
# print(y_train) # 我们看到训练数据的特征值分为3类
###训练数据###
# knn = KNeighborsClassifier() # 引入训练方法
# knn.fit(X_train, y_train) # 进行填充测试数据进行训练
###预测数据###
# print(knn.predict(X_test)) # 预测特征值
# print(y_test) # 真实特征值
return iris
def plot_iris_projection(data, feature_names, target, x_index, y_index):
for t, marker, c in zip([0, 1, 2], '>ox', 'rgb'):
plt.scatter(data[target == t, x_index], data