《论文阅读07》Segment Anything in 3D with NeRFs

SA3D是一种将2D的SegmentAnythingModel(SAM)扩展到3D的方法,通过结合神经辐射场(NeRF)技术。给定NeRF和少量手动提示,SA3D能进行3D对象分割,通过迭代的掩模逆渲染和跨视图自提示过程完成。这种方法在多种场景和任务中表现有效,提供了一种资源高效的方式将2D视觉模型转换为3D应用。
摘要由CSDN通过智能技术生成

一、论文

  • 研究领域:图像分割(3D)
  • 论文:Segment Anything in 3D with NeRFs
  • Submitted on 24 Apr 2023 (v1), last revised 1 Jun 2023 (this version, v3)
  • Computer Vision and Pattern Recognition (cs.CV)
  • nvos数据集
  • 论文链接

二、论文概要

三、全文翻译

使用NeRFs在3D中分割任何内容

  • 摘要

最近,Segment Anything Model(SAM)作为一种强大的视觉基础模型出现,它能够分割2D图像中的任何东西。本文的目的是推广SAM分割三维物体。我们设计了一种高效的解决方案,而不是复制3D中昂贵的数据采集和注释过程,利用神经辐射场(NeRF)作为将多视图2D图像连接到3D空间的廉价和现成的先验。我们将所提出的解决方案称为SA3D,即Segment Anything in 3D。只需要提供手动分割提示(例如,粗糙点),其用于在具有SAM的该视图中生成其2D掩模。接下来,SA3D交替地执行掩模逆绘制和跨视图自提示,以迭代地完成用体素网格构造的目标对象的3D掩模。前者在NeRF学习的密度分布的指导下,将SAM在当前视图中获得的2D掩模投影到3D掩模上;后者提取可靠的提示自动作为SAM的输入从NeRF渲染的2D掩模在另一个视图。我们在实验中表明,SA3D适应各种场景,并在几分钟内实现3D分割。我们的研究提供了一个通用的和有效的方法,以解除2D视觉基础模型到3D,只要2D模型可以稳定地解决提示分割跨多个视图。项目页面位于www.example.com。https://jumpat.github.io/SA3D/.

  • 介绍

计算机视觉社区一直在追求可以执行基本任务(例如,在任何场景中并且对于2D或3D图像数据,可以使用图像分割(例如,图像分割)。最近,Segment Anything Model(SAM)[22]出现并吸引了很多关注,因为它能够分割2D图像中的任何东西,但将SAM的能力推广到3D场景仍然大多数未被发现。人们可以选择复制SAM的流水线来收集和半自动注释一大组3D场景,但昂贵的负担似乎是大多数研究小组负担不起的。

选择复制SAM的流水线来收集和半自动注释一大组3D场景,但昂贵的负担似乎是大多数研究小组负担不起的

我们认识到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值