一、论文
- 研究领域:图像分割(3D)
- 论文:Segment Anything in 3D with NeRFs
- Submitted on 24 Apr 2023 (v1), last revised 1 Jun 2023 (this version, v3)
- Computer Vision and Pattern Recognition (cs.CV)
- nvos数据集
- 论文链接
二、论文概要
三、全文翻译
使用NeRFs在3D中分割任何内容
- 摘要
最近,Segment Anything Model(SAM)作为一种强大的视觉基础模型出现,它能够分割2D图像中的任何东西。本文的目的是推广SAM分割三维物体。我们设计了一种高效的解决方案,而不是复制3D中昂贵的数据采集和注释过程,利用神经辐射场(NeRF)作为将多视图2D图像连接到3D空间的廉价和现成的先验。我们将所提出的解决方案称为SA3D,即Segment Anything in 3D。只需要提供手动分割提示(例如,粗糙点),其用于在具有SAM的该视图中生成其2D掩模。接下来,SA3D交替地执行掩模逆绘制和跨视图自提示,以迭代地完成用体素网格构造的目标对象的3D掩模。前者在NeRF学习的密度分布的指导下,将SAM在当前视图中获得的2D掩模投影到3D掩模上;后者提取可靠的提示自动作为SAM的输入从NeRF渲染的2D掩模在另一个视图。我们在实验中表明,SA3D适应各种场景,并在几分钟内实现3D分割。我们的研究提供了一个通用的和有效的方法,以解除2D视觉基础模型到3D,只要2D模型可以稳定地解决提示分割跨多个视图。项目页面位于www.example.com。https://jumpat.github.io/SA3D/.
- 介绍
计算机视觉社区一直在追求可以执行基本任务(例如,在任何场景中并且对于2D或3D图像数据,可以使用图像分割(例如,图像分割)。最近,Segment Anything Model(SAM)[22]出现并吸引了很多关注,因为它能够分割2D图像中的任何东西,但将SAM的能力推广到3D场景仍然大多数未被发现。人们可以选择复制SAM的流水线来收集和半自动注释一大组3D场景,但昂贵的负担似乎是大多数研究小组负担不起的。
选择复制SAM的流水线来收集和半自动注释一大组3D场景,但昂贵的负担似乎是大多数研究小组负担不起的
我们认识到