Classification: Probabilistic Generative Model

//李宏毅视频官网:http://speech.ee.ntu.edu.tw/~tlkagk/courses.html                                                    点击此处返回总目录

//邱锡鹏《神经网络与深度学习》官网:https://nndl.github.io

 

 

 

今天要讲分类。

-------------------------------------------------------------------------------------------------------------------------------

分类这件事情呢,我们要找一个function。它的input是一个object x,它的output是这个这个object属于哪一个class。

                        

这样的task有很多,可以信手拈来。

比如在金融上,可以用classification的model来决定要不要贷款给某个人。找一个function,它的input是某一个人的income,saving啊,工作啊,年纪啊,过去有没有欠债啊等等。output就是要不要借钱给他。这是个binary classification的problem。

                   

再比如,医疗诊断。输入症状,年龄,性别等,过去就医历史等等。output是,他生的哪种病。

                   

再比如,手写字识别。输入一个自己写的字,输出是什么字。

                     

或者人脸识别,输入一张人脸,输出说是谁的。

                      

-------------------------------------------------------------------------------------------------------------------------------

我们今天要用的是,什么样的example呢?其实也是宝可梦的例子。我又做了一些关于宝可梦的研究,我们知道宝可梦有不同的属性,有几种呢?有18种属性,包括:水、火、电、草等等18种属性。

 

                       

 

我们现在要做一个分类的问题。这个分类的问题就是要找一个function,这个function的input就是某一只宝可梦,他的output就是告诉你这只宝可梦是属于哪一种type的。比如,input一只皮卡丘,他的output就是雷。input一只杰尼龟,output就是水。input一个妙蛙草,他的output就是草。所以是一个classification的问题。

                         

 

-------------------------------------------------------------------------------------------------------------------------------

那怎么样做这个问题呢?现在第一个问题就是怎么把一个宝可梦当做一个function的input。要当做input得数值化。要用数字来表示一个宝可梦,才能把它放到一个function里面。

那怎么把一只宝可梦用数字来表示呢?

一只宝可梦他其实有很多的特性。这些特性是可以数值化的,比如他整体的强度。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值