评分法-WOE值计算

本文详细介绍了信用风险评分卡模型开发过程中的关键步骤——变量筛选、连续变量分段及WOE值计算。通过最优分段和等距分段处理连续变量,采用条件推理树算法实现最优分段;对离散变量进行降维处理并计算WOE值,以提高模型预测精度。
摘要由CSDN通过智能技术生成
https://blog.csdn.net/lll1528238733/article/details/76600598

定量指标筛选见上篇:
http://blog.csdn.net/lll1528238733/article/details/76600019
定性指标筛选见上篇:
http://blog.csdn.net/lll1528238733/article/details/76600147
对入模的定量和定性指标,分别进行连续变量分段(对定量指标进行分段),以便于计算定量指标的WOE和对离散变量进行必要的降维。对连续变量的分段方法通常分为等距分段和最优分段两种方法。等距分段是指将连续变量分为等距离的若干区间,然后在分别计算每个区间的WOE值。最优分段是指根据变量的分布属性,并结合该变量对违约状态变量预测能力的变化,按照一定的规则将属性接近的数值聚在一起,形成距离不相等的若干区间,最终得到对违约状态变量预测能力最强的最优分段。
我们首先选择对连续变量进行最优分段,在连续变量的分布不满足最优分段的要求时,在考虑对连续变量进行等距分段。此处,我们讲述的连续变量最优分段算法是基于条件推理树(conditional inference trees, Ctree)的递归分割算法,其基本原理是根据自变量的连续分布与因变量的二元分布之间的关系,采用递归的回归分析方法,逐层递归满足给定的显著性水平,此时获取的分段结果(位于Ctree的叶节点上)即为连续变量的最优分段。其核心算法用函数ctree()表示。
根据表3.13所示的定量入模指标,我们采用上述最优分段算法,得到的最优分段结果分别如下。
对变量“duration”进行最优分段:

#对duration进行最优分段
library(smbinning)
result<-smbinning(df=data,y="credit_risk",x="duration",p=0.05)
result$ivtable
 
 
  • 1
  • 2
  • 3
  • 4

变量“duration”的最优分段结果,如表3.14所示
这里写图片描述

#对amount进行最优分段
result<-smbinning(df=data,y="credit_risk",x="amount")
result$ivtable
 
 
  • 1
  • 2
  • 3

这里写图片描述

#对变量age进行最优分段
result<-smbinning(df=data,y="credit_risk",x="age")
result$ivtable
 
 
  • 1
  • 2
  • 3

这里写图片描述

由于变量“installment_rate”的取值只有四个值,不适用于最优分段算法,只能采用等距分段,等距分段结果如表3.17 所示:

#对变量“installment_rate"的等距分段
install_data<-data[,c("installment_rate","credit_risk")]
tb1<-table(install_data)
total<-list()
for(i in 1:nrow(tb1))
{
  total[i]<-sum(tb1[i,])
}
t.tb1<-cbind(tb1,total)
goodrate<-as.numeric(t.tb1[,"0"])/as.numeric(t.tb1[,"total"])
badrate<-as.numeric(t.tb1[,"1"])/as.numeric(t.tb1[,"total"])
gb.tbl<-cbind(t.tb1,goodrate,badrate)
Odds<-goodrate/badrate
LnOdds<-log(Odds)
tt.tb1<-cbind(gb.tbl,Odds,LnOdds)
WoE<-log((as.numeric(tt.tb1[,"0"])/700)/(as.numeric(tt.tb1[,"1"])/300))
all.tb1<-cbind(tt.tb1,WoE)
all.tb1
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

这里写图片描述

结束对连续变量的分段及其WOE值的计算,接下来我们需要对离散变量做必要的降维处理及其WOE值得计算。我们首先查看下入模的定性指标的概况,如表3.18所示,代码如下:

discrete_data<-data[,c("status","credit_history","savings","purpose",
                       "property","credit_risk")]
summary(discrete_data)
 
 
  • 1
  • 2
  • 3

这里写图片描述

由表3.18所示的入模定性指标的概况可知,定性指标“status” “credit_history”“savings”和“property”的维数最高为5维,最低为4维,而定性指标“purpose”的维数为10维,跟其他定性指标相比,明显高出很多。此时,通常会造成“维数灾难”,需要降维处理。在评级模型开发中的降维处理方法,通常是将属性相似的合并处理,以达到降维的目的。

#对purpose指标进行降维
x<-discrete_data[,c("purpose","credit_risk")]
d<-as.matrix(x)
for(i in 1:nrow(d))
{
  if(as.character(d[i,"purpose"])=="car (new)")
  {
    d[i,"purpose"]<-as.character("car(new/used)")
  }
  if(as.character(d[i,"purpose"])=="car (used)")
  {
    d[i,"purpose"]<-as.character("car(new/used)")
  }
  if(as.character(d[i,"purpose"])=="radio/television")
  {
    d[i,"purpose"]<-as.character("radio/television/furniture/equipment")
  }
  if(as.character(d[i,"purpose"])=="furniture/equipment")
  {
    d[i,"purpose"]<-as.character("radio/television/furniture/equipment")
  }
  if(as.character(d[i,"purpose"])=="others")
  {
    d[i,"purpose"]<-as.character("others/repairs/business")
  }
  if(as.character(d[i,"purpose"])=="repairs")
  {
    d[i,"purpose"]<-as.character("others/repairs/business")
  }
  if(as.character(d[i,"purpose"])=="business")
  {
    d[i,"purpose"]<-as.character("others/repairs/business")
  }
  if(as.character(d[i,"purpose"])=="retraining")
  {
    d[i,"purpose"]<-as.character("retraining/education")
  }
  if(as.character(d[i,"purpose"])=="education")
  {
    d[i,"purpose"]<-as.character("retraining/education")
  }
}

new_data<-cbind(discrete_data[,c(-4,-6)],d)
woemodel<-woe(credit_risk~.,data = new_data,zeroadj=0.5,applyontrain=TRUE)
woemodel$woe
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46

这里写图片描述

至此,整个模型开发过程中第四步的工作,我们已经基本完成了。可见,该步骤在整个模型开发过程中占据非常重要的位置,定量和定性入模指标的筛选及其WOE值的计算,都会对整个信用风险评分卡产生重要的影响。在模型开发的第五步,我们将使用入模定量指标和入模定性指标的WOE值进行逻辑回归,并详细讲述生成信用风险评级模型标准评分卡的过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值