目录
编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑编辑
§5.1 留 数
1. 留数的定义
如果z0是f(z)的孤立奇点,那么对于解析圆环内包含z0的正向简单闭曲线C,上述积分只与f(z)和z0有关,而与C无关,但积分值不一定为零.
f(z)在z0的邻域内可展开成罗朗级数:
*/-+
2. 留数定理
定理5.1 (留数定理)
设函数f(z)在区域D内除有有限个孤立奇点z1,z2,…,zn外处处解析,C是D内包围这些奇点的一条正向简单闭曲线,那么
证明:以zk为圆心,作完全含在C内且互不相交的正向小圆Ck:|z−zk|=k,(k=1,2,…,n),由复合闭路上的柯西积分定理,有
但
于是有
3. 留数的计算方法
(1) 如果z0为f(z)的m级极点,那么
证明:因为z0是f(z)的m级极点,故在z0的邻域中有
于是
所以
于是
4. 在无穷远点的留数
定理5.2



于是就有






§5.2 留数在积分计算上的应用
1
2
因此
资料仅供学习使用
如有错误欢迎留言交流
上理考研周导师的其他专栏:
上理考研周导师了解更多