离散数学 - 二元关系

二元关系

  • 基本概念

    1. A x B AxB AxB子集叫做A到B的一个二元关系,当 A = B A=B A=B时叫做A上的二元关系
    2. A 1 x A 2 x A 2 x . . . x A n ( n > ‾ 1 ) A_1xA_2xA_2x...xA_n(n\underline{>}1) A1xA2xA2x...xAn(n>1)的子集叫做 A 1 x A 2 x A 2 x . . . x A n A_1xA_2xA_2x...xA_n A1xA2xA2x...xAn上的一个n元关系
    3. A n = A 1 x A 2 x A 2 x . . . x A n ( n > ‾ 1 ) A^n=A_1xA_2xA_2x...xA_n(n\underline{>}1) An=A1xA2xA2x...xAn(n>1)的子集叫A上的一个n元关系
    4. E A = { < x , y > ∣ x ∈ A ∧ y ∈ B } = A x B E_A=\{<x,y>|x\in A\land y\in B\} = AxB EA={<x,y>xAyB}=AxB叫做A到B的全域关系
    5. ∅ \varnothing 是A上的关系.称为空关系
    6. 恒等关系 I A = { < x , x > ∣ x ∈ A } I_A=\{<x,x>|x\in A\} IA={<x,x>xA}
  • 关系的表示:

    1. 一个集合A到另一个集合B的关系取决于集合中元素的关系,可以将每两个元素间的是否有关系表示成一张表,横纵轴分别为两个集合的元素,如果对应的一个元素到另一个有关系就标志为1,否则置为0,这就形成了 |A|x|B| 的矩阵,称为关系矩阵.
      定义: A = x 1 , x 2 , . . . , x m , B = y 1 , y 2 , . . . , y n A = {x_1, x_2, ...,x_m},B = {y_1, y_2, ...,y_n} A=x1,x2,...,xm,B=y1,y2,...,ynR是从A到B的关系,R的关系矩阵是布尔矩阵 M R = [ r i j ] m x n M_R = [{r_{ij}}]_{mxn} MR=[rij]mxn , 其中 r i j ⇔ < x i , y i > ∈ R r_{ij}\Leftrightarrow <x_i,y_i>\in R rij<xi,yi>R
      小注:从编程的角度来说,对于稠密关系矩阵表示法无可厚非,但是对于稀疏关系则会造成一定空间的浪费,有时甚至是巨大的浪费
    2. A = { x 1 , x 2 , x 3 , , , , x m } A = \{x_1, x_2, x_3,,,,x_m\} A={x1,x2,x3,,,,xm}R是A上的关系,R关系图是 G R = < A , R > G_R = <A, R> GR=<A,R>,其中A为节点集,R为边集.如果 < x i , x j > <x_i,x_j> <xi,xj>属于关系R,在图中就有一条 x i x_i xi x j x_j xj的有向边,这样所得图就叫关系R的关系图.
    • 关系的种类

      1. 自反关系与反自反关系
        (1).若 ∀ x ( x ∈ A → < x , x > ∈ R ) \forall x(x\in A\rightarrow <x, x>\in R) x(xA<x,x>R),则称R在A上是自反的
        (2).若 ∀ x ( x ∈ A → < x , x > ∉ R ) \forall x(x\in A\rightarrow <x,x>\not\in R) x(xA<x,x>R),则称R在A上是反自反的.
        (#).自反关系的关系矩阵特点为主对角线上的均为1, 关系图上所有的点均形成自环; 如果A为空集,则形成的空关系 既为自反为反自反;除此以外,自反一定不反自反,反自反一定不自反,反自反不一定自反,自反不一定反自反,也就是所存在关系既不自反又不反自反.
      2. 对称和反对称关系,
        (1).设R为A上的关系,若 ∀ x ∀ y ( x , y ∈ A ∧ < x , y > ∈ R → < y , x > ∈ R ) \forall x\forall y(x,y\in A\land <x,y>\in R\rightarrow <y,x>\in R) xy(x,yA<x,y>R<y,x>R),则称R为A上的对称关系
        (2).R是A上的关系,若 ∀ x ∀ y ( x , y ∈ A ∧ < x , y > ∈ R ∧ < y , x > ∈ R → x = y ) \forall x\forall y(x,y\in A\land <x,y>\in R\land <y,x>\in R \rightarrow x=y) xy(x,yA<x,y>R<y,x>Rx=y)则称R为A上的反对称关系
        (#).对称关系的关系矩阵为对称阵,关系图的特点是对于任意两点如果有通路则一定有两条.一个关系有可能既是对称关系又是反对称关系,比如恒等关系 I A = { < x , x > ∣ x ∈ A } I_A = \{<x,x>|x\in A\} IA={<x,x>xA}
      3. 传递关系
        (1).设R为A上的关系,若 ∀ x ∀ y ∀ z ( x , y , z ∈ A ∧ < x , y > ∈ R ∧ < y , z > ∈ R → < x , z > ∈ R ) \forall x\forall y\forall z(x, y, z\in A\land <x, y>\in R\land <y, z>\in R\rightarrow <x, z>\in R) xyz(x,y,zA<x,y>R<y,z>R<x,z>R)则称R是A上的传递关系.
    • 总结

      1. 任何集合上的的恒等关系都是自反的,对称的,反对称的和传递的,但不是反自反的.
      2. 整数集合I上,关系 < ‾ \underline{<} <是自反的,反对称的,可传递的,但不是反自反和对称的.关系<是反自反的反对称的,可传递的,但不是自反的和对称的;
      3. 非空集合上的空关系是反自反的,对称的,反对称的,和传递的,但不是自反的.空集合上的空关系则是自反的,反自反的,对称的,反对称的和可传递的;
      4. 基数大于1的集合上的全域关系是自反的,对称的和传递的,但不是反自反的和反对称的
  • 关系的运算

    1. 关系的合成
      (1). R 1 R_1 R1是A到B的关系, R 2 R_2 R2是B到C的关系,从A到C的合成关系记为 R 1 R 2 R_1R_2 R1R2定义为 R 1 R 2 = { < a , c > ∣ a ∈ A ∧ c ∈ C ∧ ∃ b ( b ∈ B ∧ < a , b > ∈ R 1 ∧ < b , c > ∈ R 2 ) } \small R_1R_2=\{<a, c>| a\in A\land c\in C\land\exists b(b\in B\land <a, b>\in R_1\land <b,c>\in R_2)\} R1R2={<a,c>aAcCb(bB<a,b>R1<b,c>R2)}
      (2). R是A到B的二元关系, I A , I B I_A,I_B IA,IB是A和B上的恒等关系,则 I A R = R I B = R I_AR = RI_B =R IAR=RIB=R
      (3). 两个交集为空集的关系的合成关系为空关系
      (4). 两个有包含关系的关系同时与另一个关系合并后(符合合并的运算规律)还满足包含关系
      (5). R 1 ( R 2 ∪ R 3 ) = ( R 1 R 2 ) ∪ ( R 1 R 3 ) R_1(R_2\cup R_3)= (R_1R_2)\cup(R_1R_3) R1(R2R3)=(R1R2)(R1R3)
      (6). R 1 ( R 2 ∩ R 3 ) ⊆ ( R 1 R 2 ) ∩ ( R 1 R 3 ) R_1(R_2\cap R_3)\subseteq (R_1R_2)\cap(R_1R_3) R1(R2R3)(R1R2)(R1R3)
      (7). 合并满足结合律但不满足交换律(类似矩阵的乘法)
      (8). 关系R的非负整数n次幂定义为 R 0 = I A R_0 = I_A R0=IA, R n + 1 = R n R = R R n R^{n+1} = R^nR = RR^n Rn+1=RnR=RRn
      (9). 两个关系的合并得到的关系的关系矩阵为两个合并的关系的关系矩阵的布尔乘积(类似于C++中bool与int的转型,元素相乘相加的时候按int的规律,最后转型为bool即可(不是零的都为一))
      (10). A是n元集,R是A上的关系,则一定存在自然数s和t,使得 R s = R t R^s = R^t Rs=Rt(A上的不同关系总共就那么 2 n 2 2^{n^2} 2n2种,而 R i R^i Ri(无数个)都为A上的关系,一定有重的)
    2. 关系的逆
      (1). R ~ = { < y , x > ∣ < x , y > ∈ R } \tilde{R} = \{<y, x>|<x, y>\in R\} R~={<y,x><x,y>R}
      (2). 关系矩阵转置即可得到关系的逆的关系矩阵,反转每条关系图中的箭头方向即可得到关系的逆的关系图
      (3). ( R S ) ~ = S ~ R ~ \tilde{(RS)} = \tilde{S}\tilde{R} (RS)~=S~R~, (联想矩阵转置的运算性质即可)
      (4). 逆的逆可抵消
      (5). 逆对 ∪ ∩ − \cup\cap - 可分配
      (6). 逆和补可交换
      (7). 两个关系的\同时求逆后不影响原有的包含关系
  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值