深度学习学习笔记——各种concatenate

tf.concat

tf.concat([tensor1, tensor2, tensor3,...], axis)

tf.keras.layers.Concatenate、tf.keras.layers.concatenate

keras.layer.Concatenate()和keras.layer.concatenate()的区别。
前者是创建一个Concatenate层,像函数一样立即使用它来合并几个输入;后者创建一个Concatenate层并立即使用给定的输入对其进行调用。具体用法如下:

concat = keras.layers.Concatenate()([x,y])#默认是axis=2,按深度方向特征融合
concat = keras.layers.Concatenate(aixs)([x,y])

concat = keras.layers.concatenate([input_A, hidden2],axis)

np.concatenate

np.concatenate([a,b],axis)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值