Taylor公式的证明

1 带Peano余项的Taylor 公式

若函数 f 满足: nN,n1,f(n)(0) 存在, 则:
δ(0),xδ(0),f(x)=f(0)+ni=1f(i)(0)i!xi+o(xn)

证明:

  1. n=1 时, f(x)=f(0)+f(0)x+o(x) 公式显然成立。
  2. n>=2 时, 令 g(x)=f(0)+ni=1f(i)(0)i!xi,h(x)=f(x)g(x),r(x)=xn
    g(0)=f(0)h(0)=0
    m,nN,m,n1,(xn)(m)=n!(nm)!xnm,n!,0,m<nm=nm>n

    得: kN,1k<n,g(k)(x)=f(k)(0)+ni=k+1f(i)(0)i!.i!(ik)!xik
    =f(k)(0)+ni=k+1f(i)(0)(ik)!xikg(k)(0)=f(k)(0)
    又: g(n)(x)=f(n)(0)g(n)(0)=f(n)(0)

    因此: kN,0kn,g(k)(0)=f(k)(0)h(k)(0)=0
    且: kN,0k<n,r(x)(k)=n!(nk)!xnkr(x)(k)=0x=0

    故:

    limx0h(x)xn=limx0h(x)h(0)r(x)r(0)=limx0h(x)r(x)=...=limx0h(n1)(x)r(n1)(x)=limx0h(n1)(x)n!x=h(n)(0)n!=0

2 带Lagrange余项的Taylor公式

若函数 f 满足: nN,n1,xR,f 0 x 组成的闭区间有 n 阶连续导数,在 0 x 组成的开区间有 n+1 阶导数, 则:
θ(0,1),f(x)=f(0)+ni=1f(i)(0)i!xi+f(n+1)(θx)(n+1)!xn+1

证法一:

  1. x=0 时,显然成立。
  2. x0 时,令 g(t)=f(t)+ni=1f(i)(t)i!(xt)i,h(t)=f(x)g(t),
    r(t)=(xt)n+1, 则需要证明的就是:

    h(0)=f(n+1)(θx)(n+1)!r(0)

    易知: h(t),r(t) 0 x 组成的闭区间连续, 在 0 x 组成的开区间可导, 且 r(t) 在开区间不等于 0 。由Cauchy中值定理:
    θ(0,1),h(x)h(0)r(x)r(0)=h(θx)r(θx)

    t 0 x 组成的开区间时,
    g(t)=f(t)+ni=1[f(i+1)(t)i!(xt)if(i)(t)i!i(xt)i1]
    =f(t)+ni=1[f(i+1)(t)i!(xt)if(i)(t)(i1)!(xt)i1]
    =f(t)+ni=1f(i+1)(t)i!(xt)in1i=0f(i+1)(t)i!(xt)i
    =f(n+1)(t)n!(xt)n
    h(t)=f(t)=f(n+1)(t)n!(xt)n
    r(t)=(n+1)(xt)n

    可得: h(t)r(t)=f(n+1)(t)(n+1)!

    又: g(x)=f(x)h(x)=0 r(x)=0
    因此:

    h(0)r(0)=h(x)h(0)r(x)r(0)=f(n+1)(θx)(n+1)!

证法二:

G(x)=f(0)+ni=1f(i)(0)i!xi,H(x)=f(x)G(x),R(x)=xn+1, 则:
kN,1kn,H(k)(0)=0,R(k)(x)=0x=0
于是: {θi(0,1):1in+1},ξ1=θ1x,ξi+1=θi+1ξi:

H(x)R(x)=H(x)H(0)R(x)R(0)=H(ξ1)R(ξ1)=...=H(n+1)(ξn+1)R(n+1)(ξn+1)=f(n+1)(ξn+1)(n+1)!

θ=n+1i=1θiθ(0,1),ξn+1=θx

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值