积分第二中值定理
设
f(x)
在
[a,b]
上可积,
g(x)
在
[a,b]
上单调,
则存在
ξ∈[a,b],
使得
∫baf(x)g(x)dx=g(a)∫ξaf(x)dx+g(b)∫bξf(x)dx
证明:
若
g(a)=g(b)
,则
g(x)=g(a),∀x∈[a,b],
命题显然成立。
因此下面只需考虑
g(a)≠g(b)
的情况。
因为
∫baf(x)g(x)dx=g(a)∫ξaf(x)dx+g(b)∫bξf(x)dx
⇔∫baf(x)[g(x)−g(b)]dx=[g(a)−g(b)]∫ξaf(x)dx
⇔∫baf(x)g(x)−g(b)g(a)−g(b)dx=∫ξaf(x)dx,
令
h(x)=g(x)−g(b)g(a)−g(b),,x∈[a,b],
则
h(a)=1,h(b)=0,h(x)
在
[a,b]
单调不增。
于是命题等价于
∫baf(x)h(x)dx=∫ξaf(x)dx
令
F(x)=∫xaf(t)dt,
则命题等价于
∫baf(x)h(x)dx=F(ξ)
易知
F(a)=0,F(x)
在
[a,b]
连续,因此
F(x)
在
[a,b]
存在最大值
M
最小值
对于
[a,b]
上的任意一个划分
P:a=x0<⋯<xn=b,
∑ni=1h(xi)∫xixi−1f(x)dx
=∑ni=1[F(xi)−F(xi−1)]h(xi)
=∑ni=1F(xi)h(xi)−∑ni=1F(xi−1)h(xi)
=∑ni=1F(xi)h(xi)−∑n−1i=0F(xi)h(xi+1)
=∑n−1i=0F(xi)h(xi)−∑n−1i=0F(xi)h(xi+1)−F(x0)h(x0)+F(xn)h(xn)
=∑n−1i=0F(xi)[h(xi)−h(xi+1)]−F(x0)h(x0)+F(xn)h(xn)
=∑n−1i=0F(xi)[h(xi)−h(xi+1)]−F(a)h(a)+F(b)h(b)
=∑n−1i=0F(xi)[h(xi)−h(xi+1)]
由于
m=m∑n−1i=0[h(xi)−h(xi+1)]
≤∑n−1i=0F(xi)[h(xi)−h(xi+1)]
≤M∑n−1i=0[h(xi)−h(xi+1)]=M
因此
m≤∑ni=1h(xi)∫xixi−1f(x)dx≤M,
(1)
f(x)
在
[a,b]
上可积,因此有界,于是
∃M′>0,∀x∈[a,b],|f(x)|<M′,
则对于任意一个
ε>0,
存在
δ=εM′,
使得对于
[a,b]
上的任意一个划分
P:a=x0<⋯<xn=b,
只要
λ=max{Δxi:i∈N,1≤i≤n}<δ,
便有
∣∣∫baf(x)h(x)dx−∑ni=1h(xi)∫xixi−1f(x)dx∣∣
=∣∣∑ni=1∫xixi−1f(x)h(x)dx−∑ni=1h(xi)∫xixi−1f(x)dx∣∣
=∣∣∑ni=1∫xixi−1f(x)[h(x)−h(xi)]dx∣∣
≤∑ni=1∣∣∫xixi−1f(x)[h(x)−h(xi)]dx∣∣
≤∑ni=1∫xixi−1|f(x)|[h(x)−h(xi)]dx
≤M′∑ni=1∫xixi−1[h(x)−h(xi)]dx
≤M′∑ni=1∫xixi−1[h(xi−1)−h(xi)]dx
=M′∑ni=1[h(xi−1)−h(xi)]Δxi
<M′εM′∑ni=1[h(xi−1)−h(xi)]
=ε
因此
limλ→0∑ni=1h(xi)∫xixi−1f(x)dx=∫baf(x)h(x)dx,
(2)
由(1), (2)可知,
m≤∫baf(x)h(x)dx≤M,
因此存在
ξ∈[a,b],
使得
F(ξ)=∫baf(x)h(x)dx