积分第二中值定理

积分第二中值定理

f(x) [a,b] 上可积, g(x) [a,b] 上单调,
则存在 ξ[a,b], 使得
baf(x)g(x)dx=g(a)ξaf(x)dx+g(b)bξf(x)dx

证明:

g(a)=g(b) ,则 g(x)=g(a),x[a,b], 命题显然成立。
因此下面只需考虑 g(a)g(b) 的情况。
因为 baf(x)g(x)dx=g(a)ξaf(x)dx+g(b)bξf(x)dx
baf(x)[g(x)g(b)]dx=[g(a)g(b)]ξaf(x)dx

baf(x)g(x)g(b)g(a)g(b)dx=ξaf(x)dx,
h(x)=g(x)g(b)g(a)g(b),,x[a,b], h(a)=1,h(b)=0,h(x) [a,b] 单调不增。
于是命题等价于 baf(x)h(x)dx=ξaf(x)dx
F(x)=xaf(t)dt, 则命题等价于 baf(x)h(x)dx=F(ξ)
易知 F(a)=0,F(x) [a,b] 连续,因此 F(x) [a,b] 存在最大值 M 最小值 m

对于 [a,b] 上的任意一个划分 P:a=x0<<xn=b,
ni=1h(xi)xixi1f(x)dx
=ni=1[F(xi)F(xi1)]h(xi)
=ni=1F(xi)h(xi)ni=1F(xi1)h(xi)
=ni=1F(xi)h(xi)n1i=0F(xi)h(xi+1)
=n1i=0F(xi)h(xi)n1i=0F(xi)h(xi+1)F(x0)h(x0)+F(xn)h(xn)
=n1i=0F(xi)[h(xi)h(xi+1)]F(x0)h(x0)+F(xn)h(xn)
=n1i=0F(xi)[h(xi)h(xi+1)]F(a)h(a)+F(b)h(b)
=n1i=0F(xi)[h(xi)h(xi+1)]

由于 m=mn1i=0[h(xi)h(xi+1)]
n1i=0F(xi)[h(xi)h(xi+1)]
Mn1i=0[h(xi)h(xi+1)]=M
因此 mni=1h(xi)xixi1f(x)dxM, (1)

f(x) [a,b] 上可积,因此有界,于是 M>0,x[a,b],|f(x)|<M,
则对于任意一个 ε>0, 存在 δ=εM, 使得对于 [a,b] 上的任意一个划分 P:a=x0<<xn=b, 只要 λ=max{Δxi:iN,1in}<δ, 便有
baf(x)h(x)dxni=1h(xi)xixi1f(x)dx
=ni=1xixi1f(x)h(x)dxni=1h(xi)xixi1f(x)dx
=ni=1xixi1f(x)[h(x)h(xi)]dx
ni=1xixi1f(x)[h(x)h(xi)]dx
ni=1xixi1|f(x)|[h(x)h(xi)]dx
Mni=1xixi1[h(x)h(xi)]dx
Mni=1xixi1[h(xi1)h(xi)]dx
=Mni=1[h(xi1)h(xi)]Δxi
<MεMni=1[h(xi1)h(xi)]
=ε
因此 limλ0ni=1h(xi)xixi1f(x)dx=baf(x)h(x)dx,
(2)
由(1), (2)可知, mbaf(x)h(x)dxM,
因此存在 ξ[a,b], 使得
F(ξ)=baf(x)h(x)dx

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值