积分第二中值定理

积分第二中值定理

f(x) [a,b] 上可积, g(x) [a,b] 上单调,
则存在 ξ[a,b], 使得
baf(x)g(x)dx=g(a)ξaf(x)dx+g(b)bξf(x)dx

证明:

g(a)=g(b) ,则 g(x)=g(a),x[a,b], 命题显然成立。
因此下面只需考虑 g(a)g(b) 的情况。
因为 baf(x)g(x)dx=g(a)ξaf(x)dx+g(b)bξf(x)dx
baf(x)[g(x)g(b)]dx=[g(a)g(b)]ξaf(x)dx

baf(x)g(x)g(b)g(a)g(b)dx=ξaf(x)dx,
h(x)=g(x)g(b)g(a)g(b),,x[a,b], h(a)=1,h(b)=0,h(x) [a,b] 单调不增。
于是命题等价于 baf(x)h(x)dx=ξaf(x)dx
F(x)=xaf(t)dt, 则命题等价于 baf(x)h(x)dx=F(ξ)
易知 F(a)=0,F(x) [a,b] 连续,因此 F(x) [a,b] 存在最大值 M 最小值 m

对于 [a,b] 上的任意一个划分 P:a=x0<<xn=b,
ni=1h(xi)xixi1f(x)dx
=ni=1[F(xi)F(xi1)]h(xi)
=ni=1F(xi)h(xi)ni=1F(xi1)h(xi)
=ni=1F(xi)h(xi)n1i=0F(xi)h(xi+1)
=n1i=0F(xi)h(xi)n1i=0F(xi)h(xi+1)F(x0)h(x0)+F(xn)h(xn)
=n1i=0F(xi)[h(xi)h(xi+1)]F(x0)h(x0)+F(xn)h(xn)
=n1i=0F(xi)[h(xi)h(xi+1)]F(a)h(a)+F(b)h(b)
=n1i=0F(xi)[h(xi)h(xi+1)]

由于 m=mn1i=0[h(xi)h(xi+1)]
n1i=0F(xi)[h(xi)h(xi+1)]
Mn1i=0[h(xi)h(xi+1)]=M
因此 mni=1h(xi)xixi1f(x)dxM, (1)

f(x) [a,b] 上可积,因此有界,于是 M>0,x[a,b],|f(x)|<M,
则对于任意一个 ε>0, 存在 δ=εM, 使得对于 [a,b] 上的任意一个划分 P:a=x0<<xn=b, 只要 λ=max{Δxi:iN,1in}<δ, 便有
baf(x)h(x)dxni=1h(xi)xixi1f(x)dx
=ni=1xixi1f(x)h(x)dxni=1h(xi)xixi1f(x)dx
=ni=1xixi1f(x)[h(x)h(xi)]dx
ni=1xixi1f(x)[h(x)h(xi)]dx
ni=1xixi1|f(x)|[h(x)h(xi)]dx
Mni=1xixi1[h(x)h(xi)]dx
Mni=1xixi1[h(xi1)h(xi)]dx
=Mni=1[h(xi1)h(xi)]Δxi
<MεMni=1[h(xi1)h(xi)]
=ε
因此 limλ0ni=1h(xi)xixi1f(x)dx=baf(x)h(x)dx,
(2)
由(1), (2)可知, mbaf(x)h(x)dxM,
因此存在 ξ[a,b], 使得
F(ξ)=baf(x)h(x)dx

<think>嗯,用户想用Python绘制积分第二中值定理的物理意义图像。首先,我需要回忆一下积分第二中值定理的内容。定理的大意是说,如果函数f在区间[a, b]上可积,g是单调函数,那么存在一个c属于[a, b],使得积分从a到b的f(x)g(x)dx等于g(a)乘以积分从a到c的f(x)dx加上g(b)乘以积分从c到b的f(x)dx。这个定理的物理意义可能涉及到面积或者某种平衡点的解释,比如重心或者力矩的概念。 接下来,我需要确定如何将这个定理可视化。可能需要选择一个具体的例子,比如选取特定的f(x)和g(x),然后展示积分的结果以及存在这样的c点。比如,假设f(x)是一个简单的函数,比如f(x)=1,或者sin(x),而g(x)是单调的,比如线性函数或者指数函数。例如,假设f(x) = sin(x),g(x) = x,在区间[0, π]上,这样g(x)是单调递增的,满足定理的条件。 然后,我需要计算积分∫₀^π sin(x)*x dx,并找到对应的c值,使得定理成立。这个积分的结果可以通过分部积分计算出来,或者用数值方法求解。之后,找到c的值,可能需要解方程:g(a)∫₀^c sin(x)dx + g(b)∫c^π sin(x)dx = 原积分结果。这里g(a)=0,因为a=0,所以可能方程会简化,但可能需要数值方法来找c。 接下来,用Python绘制图像的话,可能需要画出f(x)和g(x)的曲线,然后在区间中标出c的位置,以及对应的面积分割。比如,将积分区域分成两部分,左边用g(a)乘以f(x)的积分,右边用g(b)乘以f(x)的积分,并用不同颜色或填充表示。 另外,可能需要用数值积分的方法来计算积分,比如使用scipy的积分库。同时,为了找到c的值,可能需要用数值优化的方法,比如二分法或者牛顿法,来求解关于c的方程。例如,定义函数左边是g(a)*积分a到c的f(x)dx加上g(b)*积分c到b的f(x)dx,然后和原积分值的差,找使得差值为零的c。 在代码实现方面,首先需要导入必要的库,如numpy、matplotlib和scipy.integrate。然后定义f和g函数,计算原积分值,再定义关于c的函数,使用scipy.optimize中的root或brentq函数来求解c的值。接着,绘制f(x)*g(x)的曲线,并标记出c的位置,可能用垂直线表示。填充左右两个区域的面积,用不同的颜色区分,以展示定理的物理意义。 需要注意的是,用户可能对具体的代码实现不太熟悉,所以需要详细解释每一步的作用,并确保代码正确无误。同时,定理的应用条件,如g(x)的单调性,也要在示例中得到满足,避免用户误解。 可能遇到的问题包括:选择的f和g导致无法找到合适的c,或者积分计算不准确,导致c值求解错误。因此,需要选择容易计算的函数,或者确保数值积分的精度足够高。此外,绘图时需要调整坐标轴和标签,使图像清晰易懂。 最后,生成相关问题的时候,可以考虑数值积分的方法、定理的其他应用场景、不同函数选择的影响,或者积分中值定理的其他形式等。</think>### 分步解答:用Python绘制积分第二中值定理的物理意义图像 #### 1. **理解定理内容** 积分第二中值定理表述为: $$ \int_a^b f(x)g(x)dx = g(a)\int_a^c f(x)dx + g(b)\int_c^b f(x)dx $$ 其中$g(x)$在$[a,b]$上单调,$c \in [a,b]$。其物理意义可理解为:存在某个点$c$,将积分拆分为两部分,分别由$g(a)$和$g(b)$加权。 #### 2. **选择示例函数** 以$f(x)=\sin(x)$和$g(x)=x$(单调递增)为例,区间$[a,b]=[0,\pi]$: - 原积分:$\int_0^\pi x\sin(x)dx$ - 定理表达式:$0 \cdot \int_0^c \sin(x)dx + \pi \cdot \int_c^\pi \sin(x)dx$ #### 3. **计算原积分值** 使用分部积分计算: $$\int x\sin(x)dx = -x\cos(x) + \sin(x)$$ 代入上下限得: $$\int_0^\pi x\sin(x)dx = \pi$$ #### 4. **数值求解$c$值** 根据定理定义方程: $$\pi \cdot \int_c^\pi \sin(x)dx = \pi$$ 即: $$\int_c^\pi \sin(x)dx = 1$$ 解得: $$-\cos(\pi) + \cos(c) = 1 \Rightarrow \cos(c) = 0 \Rightarrow c = \frac{\pi}{2}$$ #### 5. **Python代码实现 ```python import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad # 定义函数 f = lambda x: np.sin(x) g = lambda x: x a, b = 0, np.pi c = np.pi/2 # 理论解 # 计算积分验证 integral_total, _ = quad(lambda x: f(x)*g(x), a, b) integral_right, _ = quad(f, c, b) result_theorem = g(a)*quad(f, a, c)[0] + g(b)*integral_right print(f"原积分值: {integral_total:.4f}") print(f"定理表达式值: {result_theorem:.4f}") # 绘图 x = np.linspace(a, b, 100) plt.figure(figsize=(10,6)) plt.plot(x, f(x)*g(x), label=r'$f(x)g(x)=\sin(x) \cdot x$', lw=2) plt.fill_between(x[x <= c], f(x[x <= c])*g(x[x <= c]), alpha=0.3, color='blue') plt.fill_between(x[x >= c], f(x[x >= c])*g(x[x >= c]), alpha=0.3, color='orange') plt.axvline(c, color='red', linestyle='--', label=fr'$c={c:.2f}$') plt.xlabel('x'), plt.ylabel('y'), plt.legend() plt.title('积分第二中值定理图示') plt.show() ``` #### 6. **图像解析** - **蓝色区域**:对应$g(a)\int_a^c f(x)dx$(由于$g(a)=0$,此部分为0) - **橙色区域**:对应$g(b)\int_c^b f(x)dx$ - **红色虚线**:标识出定理中存在的$c=\pi/2$ #### 7. **物理意义解读** 该图展示了: 1. 积分$\int_0^\pi x\sin(x)dx$的几何面积 2. 定理将原积分等效为$\pi \cdot \int_{\pi/2}^\pi \sin(x)dx$ 3. 验证了权重系数$g(b)=\pi$的作用[^1] 相关问题
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值