常见的数值积分方法 (欧拉、中值、龙格-库塔,【常用于IMU中】)

本文介绍了微分方程的几种常见数值积分方法,包括欧拉法、中值法和四阶龙格-库塔法(RK4),并详细解释了它们的工作原理及适用场景。文中还提供了一个RK4积分法的应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

1. 积分基本概念

设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分(indefinite integral)。

非线性微分方程:

在这里插入图片描述

在有限的时间间隔Δt积分:

在这里插入图片描述

连续时间内积分:

在这里插入图片描述

 

工程上最常见的有三种:欧拉积分(Euler method)、中值积分(Midpoint method)和龙格-库塔法积分(Runge–Kutta methods)。他们的区别就是如何用数值方法模拟一个斜率。这里简单总结如下:

 

2. 欧拉积分

设有如下微分方程:

欧拉方法假设导数在区间内是恒定的,作为一般的RK方法,这对应于单阶段方法,计算初始点的导数,并用它来计算终点的积分值

 

在这里插入图片描述

 

3. 中值积分

中值积分法假设导数是间隔中点的导数,并进行一次迭代来计算此中点的fx值。

设有如下微分方程:

欧拉积分与中值积分都是一阶近似并没有本质不同,二者只是一阶导数所取位置不同,他们的性能也有差别,如下图所示,作为一阶积分近似方法来讲,中点积分有时会稍好一些(带来更快的收敛速度)。

图示为方程 <span class="katex-eq" data-katex-display="false">y'=y, y(0)=1</span> 的数值积分。蓝色为欧拉法,绿色为中点法,红色为精确解 <span class="katex-eq" data-katex-display="false">y=e^{t}</span>。所用步长为 h=1.0。

 

4.RK4积分(4阶龙格库塔法)

龙格-库塔法(Runge-Kutta methods)是用于非线性常微分方程的解的重要的一类隐式或显式迭代法。在工程中最常用的是 四阶龙格-库塔积分,也就是 RK4 积分,它的计算方式如下:

设有如下微分方程:

其中:

k1 是时间段开始时的斜率;
k2 是时间段中点的斜率,通过欧拉法采用斜率k1来决定y在点tn + h/2的值;
k3 也是中点的斜率,但是这次采用斜率k2决定y值;
k4 是时间段终点的斜率,其y值用k3决定。
其数学公式如下:

从公式中可以看出两个中点的斜率具有更大的权重。龙格-库塔法的示意图如下,它也是一种更高阶的逼近方法,通常也具有更好的逼近效果,总累计误差为 Δt4 阶。

image399

Runge-Kutta4假定评估值,对于 f()​在间隔的开始,中点,中点的中点和结束。它使用四个阶段迭代计算积分,用四个导数k 1~k 4,顺序获得。然后对这些导数进行加权平均,以获得4阶估计值间隔中的导数。
RK4方法更好地指定为一个小算法而不是一步式公式。

龙格-库塔方法的推导基于Taylor展开方法,因而它要求所求的解具有较好的光滑性。如果解的光滑性差,那么,使用四阶龙格-库塔方法求得的数值解,其精度可能反而不如改进的欧拉方法。在实际计算时,应正对问题的具体特点选择适合的算法。对于光滑性不太好的解,最好采用低阶算法而将步长取小。

参考代码

 
#include "stdio.h"
#include "stdlib.h"
 
void RKT(t,y,n,h,k,z)
int n;              /*微分方程组中方程的个数,也是未知函数的个数*/
int k;              /*积分的步数(包括起始点这一步)*/
double t;           /*积分的起始点t0*/
double h;           /*积分的步长*/
double y[];         /*存放n个未知函数在起始点t处的函数值,返回时,其初值在二维数组z的第零列中*/
double z[];         /*二维数组,体积为n x k.返回k个积分点上的n个未知函数值*/
{
    extern void Func();             /*声明要求解的微分方程组*/
    int i,j,l;
    double a[4],*b,*d;
    b=malloc(n*sizeof(double));     /*分配存储空间*/
    if(b == NULL)
    {
        printf("内存分配失败\n");
        exit(1);
    }
    d=malloc(n*sizeof(double));     /*分配存储空间*/
    if(d == NULL)
    {
        printf("内存分配失败\n");
        exit(1);
    }
    /*后面应用RK4公式中用到的系数*/
    a[0]=h/2.0;                     
    a[1]=h/2.0;
    a[2]=h; 
    a[3]=h;
    for(i=0; i<=n-1; i++) 
        z[i*k]=y[i];                /*将初值赋给数组z的相应位置*/
    for(l=1; l<=k-1; l++)
    {
        Func(y,d);
        for (i=0; i<=n-1; i++)
            b[i]=y[i];
        for (j=0; j<=2; j++)
        {
            for (i=0; i<=n-1; i++)
            {
                y[i]=z[i*k+l-1]+a[j]*d[i];
                b[i]=b[i]+a[j+1]*d[i]/3.0;
            }
            Func(y,d);
        }
        for(i=0; i<=n-1; i++)
          y[i]=b[i]+h*d[i]/6.0;
        for(i=0; i<=n-1; i++)
          z[i*k+l]=y[i];
        t=t+h;
    }
    free(b);            /*释放存储空间*/
    free(d);            /*释放存储空间*/
    return;
}
main()
{
    int i,j;
    double t,h,y[3],z[3][11];
    y[0]=-1.0; 
    y[1]=0.0; 
    y[2]=1.0;
    t=0.0; 
    h=0.01;
    RKT(t,y,3,h,11,z);
    printf("\n");
    for (i=0; i<=10; i++)           /*打印输出结果*/
    {
        t=i*h;
        printf("t=%5.2f\t   ",t);
        for (j=0; j<=2; j++)
          printf("y(%d)=%e  ",j,z[j][i]);
        printf("\n");
    }
}
 
void Func(y,d)
double y[],d[];
{
    d[0]=y[1];      /*y0'=y1*/
    d[1]=-y[0];     /*y1'=y0*/
    d[2]=-y[2];     /*y2'=y2*/
    return;
}
 

 

参考文章附录A:四元数误差状态卡尔曼滤波
参考亮哥的博客说明:http://www.xinliang-zhong.vip/msckf_notes/

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

他人是一面镜子,保持谦虚的态度

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值