Multi-Task Curriculum Framework forOpen-Set Semi-Supervised Learning

本文提出了一种新的多任务课程学习框架,用于解决开放集半监督学习的问题,其中未标记数据包含分布外(OOD)样本。方法包括联合优化的OOD检测和SSL,交替更新网络参数和OOD分数,以及使用课程学习消除OOD样本影响。实验证明,该方法在消除OOD样本影响方面显著优于现有方法。
摘要由CSDN通过智能技术生成

摘要。

半监督学习(SSL)已经被提出来,当只有有限的标记数据可用时,可以利用未标记的数据来训练强大的模型。虽然现有的半监督学习方法假设标记数据和未标记数据中的样本共享它们的类别,但我们解决了一个更复杂的新场景,即开放集的半监督学习,其中未标记的数据中包含了非分布式(OOD)样本。我们提出了一个多任务课程学习框架,而不是分别训练OOD检测器和SSL。

  • 首先,为了检测无标签数据中的OOD样本,我们估计样本属于OOD的概率。
  • 我们使用一个联合优化框架,交替更新网络参数和OOD分数
  • 同时,为了实现对分布内(ID)数据的高性能分类,我们在未标记的数据中选择OOD分数较小的ID样本,并将这些数据与标记的数据一起用于训练深度神经网络,以半监督的方式对ID样本进行分类。
  • 我们进行了几次实验,我们的方法通过成功地消除OOD样本的影响,取得了最先进的结果。

1 引言

在深度学习方法取得了一些突破之后,深度神经网络(DNN)在各种机器感知任务上取得了令人印象深刻的结果,甚至超过了人类,如图像分类[8][26]、人脸识别[18]和自然语言处理[6]等大规模、有注释的训练样本。然而,创建这些大型数据集通常是费时且昂贵的。为了解决这个问题,半监督学习(SSL)被提出来,当只有有限的标注数据可用时,利用未标注的数据来提高模型的性能。在标注数据昂贵或不方便的情况下,半监督学习能够训练大型、强大的模型。关于SSL的方法有多种多样的集合。例如,一种方法是一致性正则化[24][15][28],它鼓励模型在输入被扰动时产生相同的预测结果。另一种方法,熵最小化[7],鼓励模型产生高置信度的预测。最近最先进的方法,MixMatch[2],在一个统一的损失函数中结合了上述技术,并在各种图像分类基准上取得了强大的性能。

这些现有的SSL方法假定,有标签的数据和无标签的数据具有相同的分布,也就是说,它们共享样本的类别,而且无标签数据中不存在离群的样本。然而,在现实世界中,很难保证无标签数据不包含任何从不同分布中抽取的分布外(OOD)样本。Oliver等人[20]的研究表明,添加来自不匹配的类集的无标签数据实际上会损害SSL的性能。

因此,我们考虑一种新的、现实的设置,称为 "开放集半监督学习",如图1所示。在未标记的数据中存在不属于已标记数据类别的异常值,应通过消除这些异常值的影响来对已标记和未标记的数据进行模型训练。就我们所知,我们的研究是第一个解决开放集SSL问题的研究。

虽然有很多检测OOD样本的算法[9][16][17][29],但这些方法都是在大量带有类标签的标注内分布(ID)样本上训练的。在SSL的设置中,标记的数据数量非常有限。因此,以前的方法不能实现高性能的检测,也不适合于开放集的SSL。因此,我们提出了一种使用多任务课程学习的方法,这是一个多任务框架,旨在同时解决OOD检测和SSL。

首先,我们在未标记的数据中检测OD样本。我们通过联合优化框架提出了一种新的OOD检测方法,它可以在训练OOD检测器的过程中利用含有OOD数据的未标记数据。我们训练网络来估计样本属于OOD的概率。

  • 在训练开始时,我们将所有未标记的样本视为OOD,将所有标记的样本视为ID,给每个样本分配一个初始的OOD分数(标记的数据为0,未标记的数据为1)。
  • 接下来,我们训练模型,将样本分类为OOD或ID。由于未标记的数据也包含合理数量的ID样本,将所有未标记的样本视为OOD样本会导致错误的标签分配。受噪声标签问题解决方案的启发[27],我们交替更新网络参数和OOD分数,作为一个联合优化,以清除未标记样本的噪声OOD分数,其范围从0到1。
  • 同时,在训练网络进行OOD检测的同时,我们也训练网络对ID样本进行正确分类,这就形成了多任务学习。 由于未标注数据中的ID样本预计比真实的OOD样本具有更小的OOD分数,我们使用课程学习,排除未标注数据中具有更高OOD分数的样本。
  • 然后,我们将剩余的ID未标记样本与标记数据结合起来,训练CNN通过任何SSL方法对ID样本进行正确分类,本文中使用了MixMatch[2]。
  • 我们在一组不同的开放性SSL设置上评估了我们的方法。

在许多情况下,我们的方法在很大程度上超过了现有的方法。我们将本文的贡献总结为以下几点。

  • {我们提出了一个新的实验环境和训练方法,用于Openset SSL。
  • <
几篇CVPR关于multi-task的论文笔记整理,包括 一、 多任务课程学习Curriculum Learning of Multiple Tasks 1 --------------^CVPR2015/CVPR2016v--------------- 5 二、 词典对分类器驱动卷积神经网络进行对象检测Dictionary Pair Classifier Driven Convolutional Neural Networks for Object Detection 5 三、 用于同时检测和分割的多尺度贴片聚合(MPA)* Multi-scale Patch Aggregation (MPA) for Simultaneous Detection and Segmentation ∗ 7 四、 通过多任务网络级联实现感知语义分割Instance-aware Semantic Segmentation via Multi-task Network Cascades 10 五、 十字绣网络多任务学习Cross-stitch Networks for Multi-task Learning 15 --------------^CVPR2016/CVPR2017v--------------- 23 六、 多任务相关粒子滤波器用于鲁棒物体跟踪Multi-Task Correlation Particle Filter for Robust Object Tracking 23 七、 多任务网络中的全自适应特征共享与人物属性分类中的应用Fully-Adaptive Feature Sharing in Multi-Task Networks With Applications in Person Attribute Classification 28 八、 超越triplet loss:一个深层次的四重网络,用于人员重新识别Beyond triplet loss: a deep quadruplet network for person re-identification 33 九、 弱监督级联卷积网络Weakly Supervised Cascaded Convolutional Networks 38 十、 从单一图像深度联合雨水检测和去除Deep Joint Rain Detection and Removal from a Single Image 43 十一、 什么可以帮助行人检测?What Can Help Pedestrian Detection? (将额外的特征聚合到基于CNN的行人检测框架) 46 十二、 人员搜索的联合检测和识别特征学习Joint Detection and Identification Feature Learning for Person Search 50 十三、 UberNet:使用多种数据集和有限内存训练用于低,中,高级视觉的通用卷积神经网络UberNet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision using Diverse Datasets and Limited Memory 62 一共13篇,希望能够帮助到大家
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值