问题概述:识别新类并增量学习新类,即监督学习的分类算法应当能够拒绝未知类,把这些未知类孤立出来。(开放集识别)这样就可以人工标记这些未知类,然后以增量的方式加入到原来的分类器中,进一步强化分类能力。(增量学习)
背景:
方案与主要贡献:建立了一个理论上健全的分类器——极值机(EVM)。EVM从统计极值理论(EVT)中得到了很好的解释,是第一个能够进行非线性无核可变带宽增量学习的分类器。与同一深度网络衍生特征空间中的其他分类器相比,该分类器在ImageNet数据集的基准分区上具有较高的准确率和效率。贡献 1)基于距离度量的样本级极值概率建模 2)最小表征点选择过程
方案细节:
理论分析:
1)考虑一个只有单点Xi的类Ci的分类边界距离为,这个点到所有其他类点x_j(0,1,2...)中最近点的距离的一半mij=(min d(x_i,x_j))/2, 那么如果考虑每次取样一批这里的x_j,那么这个最小半距离应该服从什么分布内。
2)对于中心极限定理来说,无论一个随机变量X服从什么分布,每次取样一批随机变量的均值(或和)都服从正态分布。即
3)而类似地,极限分布(极值理论)是指,无论一个随机变量X服从什么分布,每次取样一批随机变量的最大值都服从极值分布F。即