【pycharm基于CNN-BiGRU的轴承故障诊断方法 】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

pycharm基于CNN-BiGRU的轴承故障诊断方法


前言

传统的故障诊断方法在对轴承故障进行判定时, 存在特征提取不充分, 时序特性运用不完全且计算较为复杂的问题. 对于此问题, 本文提出一种基于CNN-BiGRU的轴承故障诊断方法。该方法首先使用 CNN 对信号数据进行特征提取, 在空间层面上, 实现了对特征的进一步提炼. 其次使用了 BiGRU 网络, 在时间层面上, 从正反两个方向获取时序关系。在经过全连接层创建映射后, 最后通过 Softmax 分类方法完成轴承故障诊断。该模型由4层CNN和一个双向门控制循环单元BIGRU组成。

一、CNN是什么?

CNN(卷积神经网络)在轴承故障诊断上有着广泛的应用。CNN的主要作用实际上是提取特征,利用轴承的时域波形信息,自动学习并提取特征,用以区分各个状态之间的区别1。通过卷积层、池化层和全连接层的组合,CNN能够有效地提取故障特征,并对其进行分类2。

与传统的轴承故障诊断方法相比,基于CNN的方法能够克服一些传统方法的不足,如需要复杂的信号处理技术、受人为因素影响较大、模型训练没有实现最优化、以及在大数据背景下模型的学习能力及泛化性能不足等3。因此,CNN在轴承故障诊断领域具有较高的准确性和鲁棒性,并且能够有效地处理变工况下的轴承故障数据2。

二、BiGRU是什么?

门控循环单元 (gated recurrent unit, GRU) 是在LSTM 的基础上演化而来[17], 改进了 LSTM 的结构, 使得 GRU 模型从复杂的三门结构, 变为只有更新与重置
两个门, 重置门用来获取长期关系, 更新门则可以获取短期关系. 其不但继承了 RNN 可以处理时间序列的能力, 还延续了 LSTM 能最大程度上减轻序列过长时存
在的梯度爆炸或梯度消失问题, 同时对新样本的适应能力更强. GRU 的结构如图 1 所示.
在这里插入图片描述GRU 是网络的传播方向是从左到右的, 即正向传播. 而为了能够更准确地获取信号之间潜在的时序关系, 还要做到反向捕获信息, 因此引入双向门控循环单元, 即 BiGRU (bidirectional gated recurrent unit).

三、实验结果

train ACC:0.9950
validation ACC:0.9992
F1 Score: 0.978222058085929
FPR: 0.0024444444444444444
Recall: 0.978
Precision: 0.97947014226084


图2训练集和验证集准确率曲线

请添加图片描述

图3 训练集和验证集损失值曲线

请添加图片描述

图4 混淆矩阵图

请添加图片描述

图5 T-SNE图

提示:完整代码见某鱼:t1234
https://m.tb.cn/h.g1OSIf5?tk=UfTDWGbG7uk CZ3458
文章参考:
基于MCNN-BiGRU-Attention 的轴承故障诊断_陈悦然, 牟 莉

  • 12
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pitepa

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值