【滚动轴承故障诊断CNN-LSTM实例代码torch(10分类) 】

#滚动轴承故障诊断CNN-LSTM实例代码torch(10分类)


前言

针对大数据下的滚动轴承振动信号自适应故障特征提取与智能诊断问题,提出了一种结合卷积神经网络(CNN)与长短时记忆网络(LSTM)的故障诊断模型.首先通过网格搜索算法寻找到当前模型的最优初始参数;然后以原始一维振动信号作为模型的输入,利用网络CNN层自适应提取短时特征信并降维后作为LSTM层输入;接着利用LSTM层学习特征信息并训练神经网络模型;最后,网络输出层利用Softmax函数实现多故障模式识别,完成故障诊断。模型由6层cnn与1层lstm组成。

一、CNN是什么?

CNN(卷积神经网络)在轴承故障诊断上有着广泛的应用。CNN的主要作用实际上是提取特征,利用轴承的时域波形信息,自动学习并提取特征,用以区分各个状态之间的区别1。通过卷积层、池化层和全连接层的组合,CNN能够有效地提取故障特征,并对其进行分类2。

与传统的轴承故障诊断方法相比,基于CNN的方法能够克服一些传统方法的不足,如需要复杂的信号处理技术、受人为因素影响较大、模型训练没有实现最优化、以及在大数据背景下模型的学习能力及泛化性能不足等3。因此,CNN在轴承故障诊断领域具有较高的准确性和鲁棒性,并且能够有效地处理变工况下的轴承故障数据2。

二、LSTM是什么?

长短期记忆网络(LSTM,Long Short-Term Memory)是一种适用于处理序列数据的递归神经网络,特别是语音和语言数据。LSTM算法的核心是一个“循环”单元,它能够学习长期依赖关系。
LSTM的核心组成部分是一个“cell state”,它类似于传统神经网络中的“隐藏层”。不同之处在于,LSTM通过一种名为“门”的结构来控制信息的流入和流出。

遗忘门:决定上一时间步的记忆多少被遗忘。
输入门:决定当前时间步有多少新信息被存储。
输出门:决定应该输出多少记忆。

LSTM结构(图右)和普通RNN的主要输入输出区别如下所示。

在这里插入图片描述

三、实验结果

评估参数:
train ACC:0.9998
validation ACC:1.0000
F1 Score: 0.9907917125412873
FPR: 0.0010222222222222221
Recall: 0.9907999999999999
Precision: 0.9911280610196709


请添加图片描述

图2训练集和验证集准确率曲线

请添加图片描述

图3 训练集和验证集损失值曲线

请添加图片描述

图4 混淆矩阵图

请添加图片描述

图5 T-SNE图

提示:完整代码见某鱼:t1234
https://m.tb.cn/h.g1OSIf5?tk=UfTDWGbG7uk CZ3458
文章参考:
【期刊论文】CNN-LSTM深度神经网络在滚动轴承故障诊断中的应用_ 陈保家 | 陈学力

  • 10
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
CNN-LSTM模型在CWru轴承故障诊断中被广泛应用。CWru轴承故障诊断是指通过监测轴承的振动信号来检测和诊断轴承故障。传统的方法通常会使用傅里叶变换等技术来提取频谱特征,但由于其无法捕捉到时域和序列信息,因此很难准确地诊断轴承故障。 CNN-LSTM模型结合了卷积神经网络(CNN)和长短期记忆网络(LSTM)的优点,为轴承故障诊断提供了更精确和准确的方法。 首先,CNN-LSTM模型使用CNN层来提取轴承振动信号的时域特征。通过卷积操作,模型能够捕捉到振动信号的局部特征。卷积核的滑动窗口可以有效地提取信号的时间段信息,从而更好地区分正常和故障状态。 接下来,LSTM层用于捕捉振动信号的序列特征。由于轴承信号具有时序性,LSTM模型能够对连续的振动信号序列进行建模。LSTM层通过学习轴承信号的长期依赖性,提取了更多的时序信息,提高了轴承故障的诊断准确性。 最后,通过连接CNNLSTM层,CNN-LSTM模型能够同时捕捉到时域和序列信息,有效地提高了轴承故障诊断的精度。通过训练大量的正常和故障样本,模型学习到了振动信号的特征模式,并能够准确地判断轴承是否发生了故障。 总的来说,CNN-LSTM模型在CWru轴承故障诊断中的应用具有显著的优势。它能够从信号的时域和序列特征中提取有效的信息,并准确诊断轴承的故障状态。这种模型为轴承的预防性维护提供了有效的工具,能够降低故障率,提高设备的可靠性和工作效率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pitepa

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值