前言
为提升故障诊断的精确度和稳定性,本研究采纳了ResNet(残差网络)模型。此模型利用滚动轴承的振动信号作为基础数据,通过深度学习技术来挖掘特征并进行分类预测,旨在增强模型适应新数据的能力。经实验验证,这项融入ResNet的故障诊断方案,在多种运行条件下均展现出高精度与可靠性,能有效辨识轴承的不同故障模式,及时为工程师预警并指引维护操作。故此,本研究成果为轴承故障诊断的研究与实践增添了一份有价值的见解。
一、模型介绍
残差网络是一种先进的深度神经网络架构,其拥有超越浅层神经网络的强大非线性映射能力,能够深入捕获多层次的数据特征。然而,随着网络深度的增加,可能会出现梯度消失问题,进而引发过拟合现象。残差网络能够很好的解决这个问题,并同时保持深度网络的优势特性。其核心在于在深度网络内部嵌入了残差模块(Residual Building Block, RBB),如图1所示的残差块结构。这一设计通过引入直接连通深层与浅层的捷径路径,有效解决了深度学习中的梯度消失问题,从而提升了模型的学习能力和泛化性能。
二、模型改进
源代码介绍见:手把手教你:基于深度学习的滚动轴承故障诊断
http://t.csdnimg.cn/KRhki
在此代码上做的改进有:
1.修改了CNN+ResNet模型结构及参数,提高了模型性能。
2.添加了余弦退火策略动态调整学习率,可以在训练过程中有效地减少模型参数的梯度消失和过拟合,从而提高模型的训练效果。
3.添加了随机固定因子,让代码训练具有可复现性。
4.修改了超参数,提高了模型的准确率和训练的稳定性。
5.添加了几种常见的结果图像绘制代码。
pycharm python=3.8
tensorflow架构
按照本科毕业sheji要求做的改进
1.程序可生成精确率P(Precision)、召回率R(Recall)以及F1(F-measure)3个评价指标
2.可生成训练集和验证集准确率曲线,训练集和验证集的损失值曲线,ROC曲线
3.可生成混淆矩阵图。
4.可生成模型内部各层的T-SNE图。
5.可把每轮迭代的准确率和损失值保存到表格中。
6.程序使用:余弦退火策略动态调整学习率,L1正则化,Dropout算法,小波阀值降噪。
7.四个工况各生成一张数据图片、预处理后数据图像。
8.使用的凯斯西储大学(Case Western Reserve University)轴承数据中心的开源数据集。(可更换为MFPT数据集、帕德博恩数据集)
## 随机森林-准确率得分:0.83
## CNN-准确率得分:0.99
## CNN+ResNet-准确率得分:1.0
三、实验结果
提示:完整代码见某鱼:t1234
https://m.tb.cn/h.geXf4V5?tk=i1hSWw0BJoy CZ3458