统计学名词解释 —— 6. 三大抽样分布(卡方分布、t分布、F分布)

从经验可知,大部分的样本分布服从或近似服从「正态分布」。现在我们要看看和正态分布有所异同,也是非常常见的三大分布都是什么样的。

x 2 x^2 x2 分布

Y ∼ X 2 ( n ) Y \sim X^2(n) YX2(n) 分布又称卡方分布,它的定义如下:

基本概念

X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn 来自正态分布总体 N ( 0 , 1 ) N(0, 1) N(0,1) 的样本,则称统计量

Y = X 1 2 + X 2 2 + ⋯ X n 2 Y = X_1^2 + X_2^2 + \cdots X_n^2 Y=X12+X22+Xn2

服从自由度为 n n n X 2 X^2 X2 分布,记为 Y ∼ X 2 ( n ) Y \sim X^2(n) YX2(n) X 2 ( n ) X^2(n) X2(n) 分布的概率密度函数为:

f ( y ) = { 1 2 n / 2 Γ ( n / 2 ) y n / 2 − 1 e − y / 2 y > 0 0 o t h e r w i s e f(y) = \left \{ \begin{matrix} \frac{1}{2^{n/2} \Gamma (n / 2)} y^{n/2-1} e^{-y / 2} & y > 0 \\ 0 & otherwise \end{matrix} \right . f(y)={2n/2Γ(n/2)1yn/21ey/20y>0otherwise

函数密度图像

在这里插入图片描述

这张图主要说明,随着样本数增加,卡方分布的概率密度图像逐渐从类似 l o g log log 的对数图像逐渐接近柏松分布。使得「概率密度图像(PDF)」呈现出和「泊松等待」相类似的特征。
在这里插入图片描述
由于组成卡方分布的每个样本 X X X 来自标准正态分布,所以每个独立样本的期望 E ( X ) = 0 E(X) = 0 E(X)=0,方差 D ( X ) = 1 D(X) = 1 D(X)=1

基本性质

对于 X 2 X^2 X2 分布来说它有两个性质

其一:

X 2 X^2 X2 分布的期望 E ( Y ) = n E(Y) = n E(Y)=n时,它的方差 D ( Y ) = 2 n D(Y) = 2n D(Y)=2n

其二:

X 2 X^2 X2 分布具有可加性。
比如,有 X ∼ Y 2 ( m ) X \sim Y^2(m) XY2(m) Y ∼ Y 2 ( n ) Y \sim Y^2(n) YY2(n),且 X 和 Y 相互独立,有 X + Y ∼ X 2 ( m + n ) X+Y \sim X^2(m+n) X+YX2(m+n)

例题

( X 1 , X 2 , ⋯   , X 6 ) (X_1, X_2, \cdots, X_6) (X1,X2,,X6) 为取自标准正态总体 N ( 0 , 1 ) N(0, 1) N(0,1) 的一个样本,求下列三个统计量的分布
(1) X 1 2 + X 2 2 X_1^2 + X_2^2 X12+X22
(2) X 1 2 X_1^2 X12
(3) X 1 2 + a ( X 2 + X 3 ) 2 + b ( X 4 + X 5 + X 6 ) 2 X_1^2 + a(X_2 + X_3)^2 + b(X_4 + X_5 + X_6)^2 X12+a(X2+X3)2+b(X4+X5+X6)2

解(1):
由样本定义可知, X 1 , X 2 , ⋯ X 6 X_1, X_2, \cdots X_6 X1,X2,X6 彼此相互独立,且服从 N ( 0 , 1 ) N(0,1) N(0,1),所以 X 1 2 + X 2 2 ∼ X 2 ( 2 ) X_1^2 + X_2^2 \sim X^2(2) X12+X22X2(2)

解(2):
由样本定义可知, X 1 , X 2 , ⋯ X 6 X_1, X_2, \cdots X_6 X1,X2,X6 彼此相互独立,且服从 N ( 0 , 1 ) N(0,1) N(0,1),因此对于单个元素它的卡方分布为 X 1 2 ∼ X 2 ( 1 ) X_1^2 \sim X^2(1) X12X2(1)

解(3):
从卡方分布的定义出发,我们令

Y 1 = X 1 2 Y 2 = a ( X 2 + X 3 ) 2 Y 3 = b ( X 4 + X 5 + X 6 ) 2 Y_1 = X_1^2 \\ Y_2 = a(X_2 + X_3)^2 \\ Y_3 = b(X_4 + X_5 + X_6)^2 Y1=X12Y2=a(X2+X3)2Y3=b(X4+X5+X6)2

对于 Y 1 = X 1 2 Y_1 = X_1^2 Y1=X12来说,由于元素来自标准正态总体,所以 Y 1 Y_1 Y1 的期望 E ( Y 1 ) = 0 E(Y_1) = 0 E(Y1)=0,方差 D ( Y 1 ) = 1 D(Y_1) = 1 D(Y1)=1,所以 Y 1 ∼ N ( 0 , 1 ) Y_1 \sim N(0, 1) Y1N(0,1)

对于 Y 2 = a ( X 2 + X 3 ) 2 Y_2 = a(X_2 + X_3)^2 Y2=a(X2+X3)2 来说,它有两个离散的样本,在 《概率论基础 —— 8.数学期望、方差、协方差》 一节中,我们可以知道由样本 ( X 2 , X 3 ) (X_2, X_3) (X2,X3) 组成的离散集合,我们可以通过离散型期望、方差的计算方法得到 E ( X 2 , X 3 ) = E ( X 2 ) + E ( X 3 ) = 0 E(X_2, X_3) = E(X_2) + E(X_3) = 0 E(X2,X3)=E(X2)+E(X3)=0,其方差 D ( X 2 , X 3 ) = D ( X 2 ) + D ( X 3 ) = 2 D(X_2, X_3) = D(X_2) +D(X_3) = 2 D(X2,X3)=D(X2)+D(X3)=2,于是有 ( X 2 + X 3 ) ∼ N ( 0 , 2 ) (X_2 + X_3) \sim N(0, 2) (X2+X3)N(0,2) ,我们对正太分布进行标准化,代入如下公式:

X − μ σ = X − 0 2 = X 2 \frac{X - \mu}{\sigma} = \frac{X - 0}{\sqrt{2}} = \frac{X}{\sqrt 2} σXμ=2 X0=2 X

于是我们得到标准正态分布 X 2 + X 3 2 ∼ N ( 0 , 1 ) \frac{X_2 + X_3}{\sqrt 2} \sim N(0, 1) 2 X2+X3N(0,1)

同理,对于 Y 3 = b ( X 4 + X 5 + X 6 ) 2 Y_3 = b(X_4 + X_5 + X_6)^2 Y3=b(X4+X5+X6)2,它的样本集合 ( X 4 , X 5 , X 6 ) (X_4, X_5, X_6) (X4,X5,X6) 的期望为0,方差为3,其标准正态分布为 X 4 + X 5 + X 6 3 \frac{X_4 + X_5 + X_6}{\sqrt 3} 3 X4+X5+X6

再从卡方分布的基本概念出发,拼凑出它应该为

X 2 = X 1 2 + ( X 2 + X 3 2 ) 2 + ( X 4 + X 5 + X 6 3 ) 2 = X 1 2 + ( X 2 + X 3 ) 2 2 + ( X 4 + X 5 + X 6 ) 2 3 X^2 = X_1^2 + \left (\frac{X_2 + X_3}{\sqrt 2} \right )^2 + \left ( \frac{X_4 + X_5 + X_6}{\sqrt 3} \right )^2 = X_1^2 + \frac{(X_2 + X_3)^2}{2} + \frac{(X_4 + X_5 + X_6)^2}{3} X2=X12+(2 X2+X3)2+(3 X4+X5+X6)2=X12+2(X2+X3)2+3(X4+X5+X6)2

所以, a = 1 2 a=\frac{1}{2} a=21 b = 1 3 b = \frac{1}{3} b=31

t t t 分布

基本概念

X ∼ N ( 0 , 1 ) X \sim N(0, 1) XN(0,1) Y ∼ X 2 ( n ) Y \sim X^2(n) YX2(n),且 X, Y 相互独立,则称随机变量
t = X Y / n t = \frac{X}{\sqrt{Y / n}} t=Y/n X
服从自由度为 n n n t t t 分布,记为 t ∼ t ( n ) t \sim t(n) tt(n) t ( n ) t(n) t(n) 分布的概率密度函数函数为:

h ( t ) = Γ [ ( n + 1 ) / 2 ] π n Γ ( n / 2 ) ( 1 + t 2 n ) − ( n + 1 ) / 2 , − ∞ < t < ∞ h(t) = \frac{\Gamma [(n+1) / 2]}{\sqrt{\pi n} \Gamma(n / 2)} (1 + \frac{t^2}{n})^{-(n+1) / 2}, -\infty < t < \infty h(t)=πn Γ(n/2)Γ[(n+1)/2](1+nt2)(n+1)/2,<t<

函数密度图像

在这里插入图片描述

例题

假设总体 X ∼ N ( 0 , 3 2 ) X \sim N(0, 3^2) XN(0,32) X 1 , X 2 , ⋯ X n X_1, X_2, \cdots X_n X1,X2,Xn 是来自总体X的简单随机样本,则统计量
Y = X 1 + X 2 + X 3 + X 4 X 5 2 + X 6 2 + X 7 2 + X 8 2 Y = \frac{X_1 + X_2 + X_3 + X_4}{\sqrt{X_5^2 + X_6^2 + X_7^2 + X_8^2}} Y=X52+X62+X72+X82 X1+X2+X3+X4 服从自由度为____ 的 __________ 分布。

解:

我们从t分布的基本定义入手

t = X Y / n t = \frac{X}{\sqrt{Y / n}} t=Y/n X

注意对于t分布的要求,其中的元素必须服从 X ∼ N ( 0 , 1 ) X \sim N(0, 1) XN(0,1),分母的Y是卡方分布, Y ∼ X 2 ( n ) Y \sim X^2(n) YX2(n)

所以令 Z = X 1 + X 2 + X 3 + X 4 ∼ N ( 0 , 36 ) Z=X_1 + X_2 + X_3 + X_4 \sim N(0, 36) Z=X1+X2+X3+X4N(0,36),我们可以标准化这个分布后得到 Z 6 ∼ N ( 0 , 1 ) \frac{Z}{6} \sim N(0, 1) 6ZN(0,1)

分母虽然看起来很像卡方分布,但是由于假设的总体 X ∼ N ( 0 , 3 2 ) X \sim N(0, 3^2) XN(0,32),所以我们要先对它进行标准化后,可以得到 X i 3 ∼ N ( 0 , 1 ) \frac{X_i}{3} \sim N(0, 1) 3XiN(0,1),然后凑出一个卡方分布得到

Y ′ = ( X 5 3 ) 2 + ( X 6 3 ) 2 + ( X 7 3 ) 2 + ( X 8 3 ) 2 = X 5 2 + X 6 2 + X 7 2 + X 8 2 9 ∼ X 2 ( 4 ) Y' = \left ( \frac{X_5}{3} \right )^2 + \left ( \frac{X_6}{3} \right )^2 + \left ( \frac{X_7}{3} \right )^2 + \left ( \frac{X_8}{3} \right )^2 = \frac{X_5^2 + X_6^2 + X_7^2 + X_8^2}{9} \sim X^2(4) Y=(3X5)2+(3X6)2+(3X7)2+(3X8)2=9X52+X62+X72+X82X2(4)

然后分别把得到的 Z Z Z Y ′ Y' Y 代入 t t t 分布公式中,于是得到

t = X / 6 Y ′ / 4 = 1 6 X 1 + X 2 + X 3 + X 4 X 5 2 + X 6 2 + X 7 2 + X 8 2 9 × 4 = X 1 + X 2 + X 3 + X 4 X 5 2 + X 6 2 + X 7 2 + X 8 2 ∼ t ( 4 ) t = \frac{X / 6}{\sqrt{Y' / 4}} = \frac{1}{6} \frac{X_1 + X_2 + X_3 + X_4}{\sqrt{ \frac{X_5^2 + X_6^2 + X_7^2 + X_8^2}{9 \times 4}}} = \frac{X_1 + X_2 + X_3 + X_4}{\sqrt{X_5^2 + X_6^2 + X_7^2 + X_8^2}} \sim t(4) t=Y/4 X/6=619×4X52+X62+X72+X82 X1+X2+X3+X4=X52+X62+X72+X82 X1+X2+X3+X4t(4)

所以它是自由度为4的t分布。

F F F 分布

基本概念

U ∼ X 2 ( n 1 ) U \sim X^2(n_1) UX2(n1) V ∼ X 2 ( n 2 ) V \sim X^2(n_2) VX2(n2),且 U U U V V V 相互独立,则称随机变量

F = U / n 1 V / n 2 F = \frac{U / n_1}{V / n_2} F=V/n2U/n1

服从自由度为 ( n 1 , n 2 ) (n_1, n_2) (n1,n2) F F F 分布,记为 F ∼ F ( n 1 , n 2 ) F \sim F(n_1, n_2) FF(n1,n2) F ( n 1 , n 2 ) F(n_1, n_2) F(n1,n2) 分布的概率密度函数为:

φ ( y ) = { Γ [ ( n 1 + n 2 ) / 2 ] ( n 1 / n 2 ) n 1 / 2 y ( n 1 / 2 ) − 1 1 y > 0 0 o t h e r w i s e \varphi (y) = \left \{ \begin{matrix} \frac{\Gamma [(n_1 + n_2) / 2] (n_1 / n_2)^{n_1 / 2} y^{(n_1 / 2) - 1}}{1} & y > 0 \\ 0 & otherwise \end{matrix} \right . φ(y)={1Γ[(n1+n2)/2](n1/n2)n1/2y(n1/2)10y>0otherwise

函数密度图像

在这里插入图片描述

例题

设随机变量 T ∼ t ( n ) T \sim t(n) Tt(n) F = 1 T 2 F = \frac{1}{T^2} F=T21 求随机变量F的分布

解:

先从 t t t 分布的定义出发,它是

t = X Y / n t = \frac{X}{\sqrt{Y / n}} t=Y/n X

其中 X ∼ N ( 0 , 1 ) X \sim N(0, 1) XN(0,1) Y ∼ X 2 ( n ) Y \sim X^2(n) YX2(n),所以我们得到 T = X Y / n T = \frac{X}{\sqrt{Y / n}} T=Y/n X。代入 F = 1 T 2 F = \frac{1}{T^2} F=T21 后,我们有

F = Y / n X 2 F = \frac{Y / n}{X^2} F=X2Y/n

由于我们前面已经假设了 X ∼ N ( 0 , 1 ) X \sim N(0, 1) XN(0,1),所以当 Y ′ = X 2 Y' = X^2 Y=X2 时,它自然也是卡方分布,且只有一个元素,于是有 Y ′ ∼ X 2 ( 1 ) Y' \sim X^2(1) YX2(1),参考F分布的定义,我们有

F ′ = U / n 1 V / n 2 F' = \frac{U / n_1}{V / n_2} F=V/n2U/n1

U U U V V V 均是卡方分布,我们代入已知的 Y / n Y / n Y/n U / n 1 U / n_1 U/n1 Y ′ Y' Y 可等价于 Y ′ / 1 Y' / 1 Y/1 并且 Y Y Y Y ′ Y' Y互相独立,于是也可以代入到 V / n 2 V/n_2 V/n2,得到最终 F ′ F' F 的分布

F ′ = Y / n Y ′ / 1 = Y / n X 2 F' = \frac{Y / n}{ Y' / 1} = \frac{Y / n}{X^2} F=Y/1Y/n=X2Y/n

所以 F = F ′ F = F' F=F,于是 F ∼ F ( n , 1 ) F \sim F(n , 1) FF(n,1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值