机器学习
本专栏收录机器学习相关博客
是土豆大叔啊!
知其不可奈何而安之若命
展开
-
[RL]TD-learning
TD-learning一、导入库二、MDP三、Q-learning一、导入库from typing import Dict, List, Optional, Tupleimport dataclassesimport numpy as np二、MDP@dataclasses.dataclassclass Transition: state: Tuple[int, int] action: str next_state: Tuple[int, int] re原创 2021-02-22 18:33:42 · 142 阅读 · 1 评论 -
[RL]On-Policy蒙特卡洛控制
On-Policy蒙特卡洛一、导入库二、MDP三、On-Policy蒙特卡洛控制一、导入库from typing import Dict, List, Optional, Tupleimport dataclassesimport numpy as np二、MDP@dataclasses.dataclassclass Transition: state: Tuple[int, int] action: str next_state: Tuple[int, int]原创 2021-02-22 18:30:15 · 207 阅读 · 0 评论 -
[RL]MDP和值迭代
MDP和值迭代一、导入库二、MDP实现三、值迭代 Value Iteration一、导入库from typing import Dict, List, Optional, Tupleimport dataclassesimport numpy as np二、MDP实现@dataclasses.dataclassclass Transition: state: Tuple[int, int] action: str next_state: Tuple[int, in原创 2021-02-22 17:18:55 · 254 阅读 · 0 评论 -
[RL]隐马可夫模型与前向算法实现
隐马可夫模型与前向算法Representation 初始化表示Direct Prior Sampling 直接实先采样Forward algorithm 前向采样初始如下图所示:实现代码如下:import dataclassesimport numpy as npfrom typing import Dict, List, Optional, TypeVar, Tuple, UnionRepresentation 初始化表示prior = np.array([0.5, 0.5])#原创 2020-11-16 03:14:29 · 148 阅读 · 0 评论 -
[RL]贝叶斯网实现—天气预测
贝叶斯网实现Representation 各个类的表示Network Definition 定义网络Direct Prior Sampling 直接事先抽样各依赖关系和概率如上图所示,建立贝叶斯网,使用直接事先抽样方法各参数的含义:C:CloudS:SprinkerR:RainW:WetGrass贝叶斯公式:P(Cause∣Effect)=P(Effect∣Cause)P(Cause)P(Effect)P(Cause|Effect) = \frac{P(Effect|Cause)P(C原创 2020-11-16 02:59:13 · 1827 阅读 · 0 评论 -
[RL]均匀分布与高斯分布图绘制
文章目录一、导入 import二、均匀分布与高斯分布函数三、可视化四、试验一、导入 importimport numpy as npimport matplotlib.pyplot as plt二、均匀分布与高斯分布函数均匀分布:def uniform(): return np.random.rand() #生成[0, 1)的数据高斯分布:def gaussian(mean, sigma): return sigma*np.random.randn() + mea原创 2020-10-08 00:14:43 · 1256 阅读 · 0 评论 -
二进制函数JSON数据分类问题代码——机器学习
代码背景详情请点我求各位看官老爷点个赞!!from sklearn import svmfrom sklearn.naive_bayes import GaussianNBfrom sklearn.linear_model import LogisticRegressionfrom sklearn import treefrom sklearn.metrics import classification_reportimport reimport pandas as pdimport n原创 2020-12-04 15:13:15 · 228 阅读 · 0 评论 -
二进制函数JSON数据分类问题——机器学习
一、背景现在的许多坏银使用恶意软件控制我们的电子设备,从而造成恶意伤害!恶意软件的原理之一就是修改或直接移除电子设备中二进制的函数和变量名称。原创 2020-12-04 04:40:21 · 742 阅读 · 0 评论 -
[ML]降低错误率剪枝算法 Reduce Error Pruning
降低错误率剪枝算法 Reduce Error Pruning首先说明:剪枝大体上分为预剪枝和后剪枝。预剪枝是指在生成树的过程中,先判断生成子树会不会有性能提升,如果有就生成,没有就剪枝。后剪枝是指在生成树后,判断树的枝干在剪和不剪的情况下有没有性能提升再决定剪不剪枝。降低错误率剪枝算法属于后剪枝算法,即当树生成后,将子树替换成其叶节点,类别按叶节点中样本最多的类,然后判断剪和不剪之间的性能差异,然后再决定剪不剪枝。考察结点⑤,若将其领衔的子树替换为叶结点,则替换后的叶结点包含编号为 {6,7,1原创 2020-10-16 19:57:07 · 1785 阅读 · 0 评论 -
[ML]决策树、ID3、C4.5和基尼指数
[ML]决策树一、决策树 Decision Tree1.什么是决策树?2.举个“栗子”二、ID3算法1.算法理论2.实例应用一、决策树 Decision Tree1.什么是决策树?什么是决策树?通俗点讲,就是把数据的属性按照树的形式来排列,数据的属性作为树的节点,属性值作为分支的依据,叶子节点作为该条数据所属的分类。再通俗点讲,分类树其实和 if-else语句很像,比如这有一个水果 a,如何用决策树分辨这个水果 a 是不是苹果?可以用:if a.颜色 = 红色: a 是苹果else: a 不原创 2020-10-15 21:54:15 · 788 阅读 · 0 评论 -
[ML]分类方法评估
分类评估方法一、误差、准确率与估计偏差1. 真实误差 True Error2. 样本误差 Sample Error3. 准确率 Accuracy4.估计误差 Estimation bias二、K折交叉验证 K-fold Cross Validation三、分类性能矩阵1.错误率 Error Rate2.准确率 Accuracy3.召回率 Recall4.精确率 Precision5.F1-Score6.混淆矩阵 Confusion Matrix7.其他性能度量一、误差、准确率与估计偏差首先说明:定义原创 2020-10-12 13:04:24 · 549 阅读 · 0 评论 -
[ML]爱的初体验
文章目录一些基本概念**1. 何为机器学习?****2. 归纳 Induction****3. 演绎 deduction****4. 概念学习 Concept Learning****5. 布尔概念学习 Boolean Concept Learning****6. 假设空间 Hypothesis Space****7. 学习看作搜索****8. 版本空间 Version Space****9. 归纳偏好 Inductive Bias**一些基本概念1. 何为机器学习?《机器学习》周志华版给出的解释原创 2020-10-07 23:28:03 · 224 阅读 · 0 评论