人工智能
文章平均质量分 87
该专栏主要收录人工智能相关领域博客
是土豆大叔啊!
知其不可奈何而安之若命
展开
-
[AI] LRTA*搜索算法及其扩展算法
LRTA是基于RTA的改进版,RTA会记录第二最优解,进而引导agent走向错误方向,LRTA通过记录最优解而不是第二最优解解决了这个问题。LRTAHsgss′Hs′Hsgss′Hs′其中H(s)表示前一节点的启发式值,g(s, s’)表示从节点s到s‘的代价,H(s’)表示当前节点的启发式值。LRTA。原创 2023-03-14 23:51:10 · 830 阅读 · 0 评论 -
[AI] 优先级LRTA*搜索算法 Prioritized-LRTA*
优先级LRTA*搜索算法,Prioritized-LRTA*,启发式搜索算法原创 2022-12-06 06:04:57 · 506 阅读 · 0 评论 -
[AI] LRTA*ls(k)搜索算法
LRTA*搜索算法的进阶版LRTA*(K)搜索算法的进阶版——LRTA*ls(K)搜索算法!原创 2022-11-27 23:04:56 · 389 阅读 · 0 评论 -
[AI] LRTA*(K) 搜索算法
LRTA*(K)搜索算法,是LRTA*搜索算法的加强版!原创 2022-11-23 19:25:25 · 469 阅读 · 0 评论 -
[PR] LRTA* 搜索算法
LRTA*搜索算法,是A*算法的加强版,解决了A*容易陷入局部最小值的问题。核心是理解 h 值的更新!原创 2022-11-11 04:15:07 · 930 阅读 · 0 评论 -
[AI] 如何制作一个低配山寨版贾维斯?-口语人机交互 Spoken Human Robot Interaction
口语人机交互 Spoken Human Robot Interaction一、交互结构总览二、代码一、代码背景二、对话运行结果展示对话一对话二对话三对话四三、实现代码如何制作一个低配山寨版贾维斯?一、交互结构总览第一步:首先通过语音输入设备,将语音信息输入计算机。这里我使用speech_recognition.sr.Microphone() 函数调用计算机麦克风,然后 sr.Recognizer().listen() 将麦克风输入的语音信息保留下来。第二步:使用语言识别库,将输入语音原创 2021-07-05 21:39:37 · 2565 阅读 · 3 评论 -
[MAS]分工合作 Working Together
多智能体系统分工合作一、合作1、协同分布式问题求解的背景2、合作主要分为两种情况3、合作方法二、任务共享分配方式1、预定义分配2、紧急分配一、合作1、协同分布式问题求解的背景任何智能体都不能自己解决问题不同的能力、资源和知识2、合作主要分为两种情况仁慈的智能体:智能体通过提前的设计来提供帮助智能体网络具有共同的目标自利的智能体:智能体只为自己的利益而采取行动(并可能进行合作)具有潜在冲突3、合作方法感知和行动的合作结果共享(感知合作)交换原创 2021-01-24 20:59:00 · 156 阅读 · 0 评论 -
[MAS]智能体交流 Agent Communication
MAS:Multi-Agent System一、MAS交流自治智能体可以控制状态和行为方法是根据智能体的自身利益来执行的智能体可以执行交流动作,即试图影响其他智能体智能体之间的沟通意味着互动,即智能体执行沟通后行为二、言语行为理论MAS中的交流受到言语行为理论的启发,人们普遍认为言语行为理论始于哲学家约翰·奥斯丁(Austin, 1962)的著作:“如何用言语行事(How to do things with words)"言语行为理论研究语言的语用运用:-试图说明人们每天如何使用语原创 2021-01-16 23:40:08 · 807 阅读 · 1 评论 -
[AI]PDDL-博物馆导游规划
大概说一下题目:机器人要先去开灯,然后到游客处给游客讲解,标有“小心地滑”的地方和动物区域不能去可用PDDL Editor在线运行其PDDL如下:domain file:(define (domain museum-domain) (:requirements :strips) (:predicates (at ?x ?y) (adj ?x ?y) (lights ?x) (wet ?y) (ro ?x) (cu ?x) (helped ?x)) (:action turnOn.原创 2020-11-12 21:19:48 · 397 阅读 · 0 评论 -
[AI]PDDL-打扫房间规划
大概说一下题目:机器人要去打扫房间,蓝色代表水渍,要被打扫,三个人头表示顾客,机器人不能进有顾客的房间,机器人只有在房间门口时才可以进去打扫。目标就是打扫干净能打扫的房间我的大概思路是把room和中间的空格绑定到一起,因为机器人进去打扫然后退出来这一系列动作其实是可以忽略的。忽略后这个问题就变成了:机器人走到某位置(position),那么就可以判断该位置对应的房间的属性(脏不脏,有没有人)。这样就把动作分解为了移动(只移动到空格处,房间不算)和打扫(该动作判断所处位置对应的房间属性,然后执行打.原创 2020-11-12 21:09:14 · 669 阅读 · 0 评论 -
[AI]PDDL-汉诺塔经典规划问题
PDDL-汉诺塔经典规划问题汉诺塔问题的描述如上图所示,其PDDL为:domain 文件:(define (domain hanoi)(:requirements :strips)(:predicates (disk ?x)(on ?x ?y)(smaller ?x ?y)(clear ?x))(:action move:parameters (?disk ?from ?to):precondition (and (disk ?disk) (on ?disk ?from)原创 2020-11-04 02:21:59 · 599 阅读 · 5 评论 -
[AI]PDDL-单臂机器人移动杯子问题
单臂机器人移动杯子问题PDDL:初始状态和目标状态如上图所示,单臂只能一次抓取一个杯子,其完整PDDL如下:domain文件:(define (domain one-arm)(:requirements :strips)(:predicates (cup ?x)(at-pos ?x ?y)(pos-clear ?x)(pos ?x))(:action move:parameters (?cup ?from ?to):precondition (and (cup ?x)(at-pos ?cu原创 2020-11-04 01:25:48 · 592 阅读 · 0 评论 -
[AI]搜索算法 规划算法PDDL 人工智能练习题汇总
无信息搜索:深度优先、广度优先、迭代加深搜索练习题启发式搜索:循环检测 Loop Check禁止数字Forbidden Numbers3传教士3食人族、单臂机器人、汉诺塔启发式可采纳性练习题原创 2020-10-24 21:14:56 · 1345 阅读 · 0 评论 -
[AI]启发式可采纳性练习题
启发式可采纳性练习题练习题一练习题二练习题一现有4个数字按一下顺序排列:4,1,3,24, 1, 3, 24,1,3,2要求:目标状态是这4个数字按升序排列每次重新排序可以交换 位置 i 和 位置 j 的数字假定每一次交换的代价cost为:∣j−i∣+1|j - i| + 1∣j−i∣+1启发式函数h(n)h(n)h(n)表示相对于目标状态,位置错误的数字的数量1. h(n)h(n)h(n)是否为可采纳启发式?答:h(n)h(n)h(n)是可采纳启发式,因为它假定将每个数字排正确的原创 2020-10-24 21:07:08 · 1313 阅读 · 0 评论 -
[AI]A*搜索练习题——3传教士3食人族、单臂机器人、汉诺塔
A*搜索练习题一、3传教士3食人族二、单臂机器人三、汉诺塔一、3传教士3食人族现在有3个传教士,3个食人族都在河的一侧要过河,只有一艘船,船最多只能载两个人,河同一侧的传教士的人数要大于等于食人族的数量,否则会被吃掉。要解决的问题:请描述其状态空间请指明operator请寻找出解决问题的最小序列找到一个好的启发式方法供A*算法使用画出A∗A^{*}A∗为了解决问题而产生的搜索树对每个节点的表示:数字(状态), 代价(f, g, h)和表示展开顺序的整数答案如下:2. Operat原创 2020-10-23 21:43:15 · 1312 阅读 · 0 评论 -
[AI]A*搜索练习题——禁止数字Forbidden Numbers
A*搜索练习题——禁止数字Forbidden Numbers题目规则:关于100到999之间的整数一开始会给出两个数字表示初始状态和目标状态给出一个禁止数字的集合,例如{679,666}每次移动只能增加或降低一个数字每次移动不能使用被禁止的数字不允许连续更改数字,例如:667→\rightarrow→ 668→\rightarrow→ 669求解问题如下:1. 请描述其状态空间2. 请指明operator3. 请寻找出从 I = 567 到 G = 777 的最小序列4. 禁止数原创 2020-10-23 21:12:34 · 393 阅读 · 0 评论 -
[AI]搜索练习题——循环检测 Loop Check
搜索练习题——循环检测 Loop Check问题的状态空间为{s1s_{1}s1, s2s_{2}s2, s3s_{3}s3, s4s_{4}s4},初始化状态 s1s_{1}s1,A, B, C根据上图定义为 operatorsOperator的位置 position<i, j> 表示从状态 i 到状态 j 的转换,Operator的代价分别为:cost(A) = 10, cost(B) = 15, cost© = 5使用循环检测搜索,避免重复状态,假定状态节点扩展顺序为:s原创 2020-10-23 14:06:00 · 413 阅读 · 0 评论 -
[AI]深度优先、广度优先、迭代加深搜索练习题
一、 请分别用广度优先,深度优先,迭代加深搜索按顺序写出其访问和扩展的节点:1. 广度优先搜索:Visit{A, B, C, D, E, F, G, H, I, J}Expansion{A, B, C, E, F}2. 深度优先搜索:Visit{A, B, D, C, E, G, H, F, I, J}Expansion{A, B, C, E, F}3. 迭代加深搜索:limitation l = 0:{Visit{A}Expansion{}}limitation l =原创 2020-10-23 13:33:10 · 2050 阅读 · 4 评论 -
[AI]超越经典搜索 Beyond Classical Search
超越经典搜索 Beyond Classical Search一、爬山法二、模拟退火法 Simulated Annealing三、局部束搜索 Local Beam Search四、遗传算法 Genetic Algorithms写在前面:超越经典搜索算法更接近现实世界,不再强求环境的确定性和可观察性。一、爬山法爬山法顾名思义,该算法求解就像人爬山一样,从低处(不太好的结果)一点点向高处(更好的结果)爬。详细的解释:在解空间随机初始化一个节点 current,其结果记为 VALUE[current]原创 2020-10-23 01:49:33 · 621 阅读 · 0 评论 -
[AI]遗传算法 Genetic Algorithms
遗传算法 Genetic Algorithms原理不多赘述,用《人工智能:一种现代方法》这本书的例子解释下:我们用八皇后的位置(从下往上数,第一格为1)表示为其状态,例如下图的状态为[1, 6, 2, 5, 7, 4, 8, 3]:介绍完了位置的表示,现在我们有四个八皇后状态及遗传算法的示例:解释:图(a)表示4个八皇后棋盘的初始状态,图(b)他们按照适应度函数给出评估,评分高的享有更多的交配权,图©表示交配后的结果,此处注意,a中有一个交配了两次,有一个一次都没交配就像现实生活。。优胜劣汰。原创 2020-10-23 01:48:15 · 409 阅读 · 0 评论 -
[AI]A*算法
A*算法一、A*算法原理二、做个例题吧~三、A*算法的最优性1.可采纳启发式 Admissible Heuristic2.一致性启发式 Consistent Heuristic四、A*算法的性能一、A*算法原理相比贪婪最优搜索的f(n)=h(n)f(n)=h(n)f(n)=h(n)注重当前节点到目标节点的距离h(n),A*算法还注重当前节点到初始节点的距离g(n),用公式表示为:f(n)=g(n)+h(n)f(n) = g(n) + h(n)f(n)=g(n)+h(n)这公式看着可太枯燥了,用个简单原创 2020-10-16 23:14:19 · 3264 阅读 · 3 评论 -
[AI]贪婪最佳优先搜索 Greedy Best-First Search
贪婪最佳优先搜索 Greedy Best-First Search一、算法原理二、算法应用三、算法性能一、算法原理所谓贪婪,即只扩展当前代价最小的节点(或者说离当前节点最近的点)。这样做的缺点就是,目前代价小,之后的代价不一定小,如果解在代价最大的点,那么按照贪婪最佳优先算法,可能就找不到这个解,然后就会陷入死循环。公式表示为:f(n)=h(n)f(n)=h(n)f(n)=h(n)h(n)h(n)h(n)代表当前节点到目标节点的最短距离。二、算法应用我们来举个例子实际应用一下该算法。著名的R原创 2020-10-16 20:48:37 · 10024 阅读 · 2 评论 -
[ML]无信息搜索 Uninformed Search
1原创 2020-10-11 19:46:04 · 1764 阅读 · 3 评论 -
阿尔法α-贝塔β剪枝
1、简单的说明:一开始α和β是负正无穷,α表示到目前为止路径上发现的MAX的最佳(即极大值)选择,β表示到目前为止路径上发现的MIN的最佳(即极小值)选择。α-β搜索中不断更新α和β的值,并且当某个节点的值分别比目前的MAX的α或者MIN的β的值更差时剪裁此节点剩下的分支(即终止递归调用)。2、开始:每一个节点上都标明了可能的取值范围,先从B下面第一个叶节点3开始,这时作为MIN节点的B值...原创 2018-09-28 10:27:13 · 24201 阅读 · 12 评论