博客内容仅我个人理解,并且内容也仅根据我的个人需求而有所删减,没有任何解说可以代替原文,好论文值得你完整阅读
主题
uniPort算法主要用于集成单细胞RNA和ATAC数据,然后进行下游数据分析和应用
创新点/贡献
- 将Autoencoder和unbalanced optimal transport结合,算是一种新颖的集成数据算法
- UniPort可以整合共同基因和数据集特定基因
- Minibatch-UOT的minibatch策略可以提高大数据集的计算效率,unbalance可以处理异构数据集成
- 可以通过另一个数据集中的共同基因来归纳一个数据集中的独特基因而无需从头训练(神经网络优势)。
uniPort算法理论
我一开始以为是将数据拉进潜在空间,然后用UOT直接对齐数据,结果只是用UOT计算损失,用于指导VAE训练。
其实细想也对,作者希望结果是两个数据对齐的,UOT的wasserstien distance就反映了数据是否对齐,这样就可以作为损失,训练VAE产生的结果趋近对齐,聪明!