4、向量场理论与坐标变换知识详解

向量场理论与坐标变换知识详解

1. 预备知识证明

在证明相关理论时,设 $\phi = p\Delta u$,$\psi = p\Delta v$,依据散度性质可得:
$v\Delta(p\Delta u) = v\Delta\phi = \nabla\cdot (v\nabla\phi) - \nabla v \cdot \nabla\phi$ (1)
式(1)的最后一项还可写成:
$\nabla v \cdot \nabla\phi = \nabla\cdot (\phi\nabla v) - \phi\nabla\cdot \nabla v = \nabla\cdot (\phi\nabla v) - \phi\Delta v$ (2)
将式(2)代入式(1),有:
$v\Delta(p\Delta u) = v\Delta\phi = \nabla\cdot (v\nabla\phi - \phi\nabla v) + \phi\Delta v$ (3)
交换 $u$ 和 $v$,并根据 $\psi = p\Delta v$,可得:
$u\Delta(p\Delta\psi) = u\Delta\psi = \nabla\cdot (u\nabla\psi - \psi\nabla u) + \psi\Delta u$ (4)
由于式(3)和式(4)相等,两式相减,且注意到 $\phi\Delta v = \psi\Delta u = p\Delta u\Delta v$,可得:
$\nabla\cdot (v\nabla\phi - u\nabla\psi + \psi\nabla u - \phi\nabla v) =

【源码免费下载链接】:https://renmaiwang.cn/s/3r450 支持向量机(Support Vector Machines,SVM)是机器学习领域一种强大的监督学习算法,尤其在分类和回归问题上表现出色。本章聚焦于通过Python 3.7实现支持向量机,提供详尽的代码注解,帮助读者深入理解其工作原理。一、支持向量机基本概念支持向量机的核心思想是找到一个最优超平面,该超平面能够最大程度地将不同类别的数据分开。超平面是特征空间中的一个决策边界,它由距离最近的训练样本(即支持向量)决定。SVM的目标是最大化这些最接近样本的距离,也就是所谓的间隔。二、SVM的两种类型1. 线性SVM:当数据线性可分时,SVM可以找到一个线性超平面进行分类。2. 非线性SVM:通过核函数(如高斯核、多项式核等)将低维非线性数据映射到高维空间,从而在高维中找到一个线性超平面进行分类。三、SVM的主要组成部分1. 决策函数:SVM使用超平面作为决策边界,形式为`w·x+b=0`,其中`w`是超平面的法向量,`b`是偏置项。2. 支持向量:位于最近间隔边缘的数据点,对超平面的位置至关重要。3. 软间隔:允许一部分样本落在决策边界内,通过惩罚项C控制误分类的程度。4. 核函数:用于实现非线性分类,如高斯核(RBF,Radial Basis Function):`K(x, y) = exp(-γ||x-y||^2)`,其中γ是调整核函数宽度的参数。四、Python实现SVM在Python中,我们可以使用Scikit-Learn库来实现SVM。Scikit-Learn提供了多种SVM模型,如`svm.SVC`(用于分类)、`svm.LinearSVC`(仅线性分类)和`svm.NuSVC`(nu版本的SVM,支持类别不平衡问题)。五、SVM的训练预测流程1. 数据预处理:将数据归一化或标准化,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值