向量场理论与坐标变换知识详解
1. 预备知识证明
在证明相关理论时,设 $\phi = p\Delta u$,$\psi = p\Delta v$,依据散度性质可得:
$v\Delta(p\Delta u) = v\Delta\phi = \nabla\cdot (v\nabla\phi) - \nabla v \cdot \nabla\phi$ (1)
式(1)的最后一项还可写成:
$\nabla v \cdot \nabla\phi = \nabla\cdot (\phi\nabla v) - \phi\nabla\cdot \nabla v = \nabla\cdot (\phi\nabla v) - \phi\Delta v$ (2)
将式(2)代入式(1),有:
$v\Delta(p\Delta u) = v\Delta\phi = \nabla\cdot (v\nabla\phi - \phi\nabla v) + \phi\Delta v$ (3)
交换 $u$ 和 $v$,并根据 $\psi = p\Delta v$,可得:
$u\Delta(p\Delta\psi) = u\Delta\psi = \nabla\cdot (u\nabla\psi - \psi\nabla u) + \psi\Delta u$ (4)
由于式(3)和式(4)相等,两式相减,且注意到 $\phi\Delta v = \psi\Delta u = p\Delta u\Delta v$,可得:
$\nabla\cdot (v\nabla\phi - u\nabla\psi + \psi\nabla u - \phi\nabla v) =