【深度学习基础】通俗地解释特征值和特征向量

首先对于矩阵来说,其本质表示的是向量在一个空间到另一个空间的映射

我们都知道一个单位矩阵乘上任意一个向量,向量的值都不会发生改变,这是因为单位矩阵表示的是一个坐标系到笛卡尔坐标系的映射,而这个向量已经在笛卡尔坐标系了,所以结果保持不变。

如果现在有一个非奇异矩阵,那么它的每一列都视为一个向量,这些向量构成了空间的一组基向量。以2*2的矩阵A为例:

A = [ 1 0 0 2 ] A=\begin{bmatrix}1&0\\0&2\end{bmatrix} A=[

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值