数学分析复习:一元函数的极限

本篇文章适合个人复习翻阅,不建议新手入门使用

函数极限

定义和性质

定义:函数极限
设函数 f ( x ) f(x) f(x)
∀ ε > 0 , ∃ δ > 0 , ∀ x ∈ O o ( x 0 , δ ) , s . t . ∣ f ( x ) − A ∣ < ε \forall \varepsilon>0,\exists \delta>0,\forall x\in O^o(x_0,\delta),s.t.|f(x)-A|<\varepsilon ε>0,δ>0,xOo(x0,δ),s.t.∣f(x)A<ε其中 O o ( x 0 , δ ) O^o(x_0,\delta) Oo(x0,δ) 表示 x 0 x_0 x0 的去心邻域
则称 f ( x ) f(x) f(x) x 0 x_0 x0 处有极限 A A A,记为 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A
∀ ε > 0 , ∃ δ > 0 , ∀ x ∈ ( x 0 , x 0 + δ ) , s . t . ∣ f ( x ) − A ∣ < ε \forall \varepsilon>0,\exists \delta>0,\forall x\in (x_0,x_0+\delta),s.t.|f(x)-A|<\varepsilon ε>0,δ>0,x(x0,x0+δ),s.t.∣f(x)A<ε则称 f ( x ) f(x) f(x) x 0 x_0 x0 处有右极限 A A A,记为 lim ⁡ x → x 0 + f ( x ) = A \lim\limits_{x\to x_0^+}f(x)=A xx0+limf(x)=A;类似可定义左极限

函数定义的扩充
对于 x → ∞ x\to \infty x x → x 0 − x\to x_0^- xx0 f ( x ) → ∞ f(x)\to \infty f(x) 等情形,极限定义大同小异,列表如下

  • lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A
    ∀ ε > 0 , ∃ δ > 0 , ∀ x ∈ O o ( x 0 , δ ) , s . t . ∣ f ( x ) − A ∣ < ε \forall \varepsilon>0,\exists \delta>0,\forall x\in O^o(x_0,\delta),s.t.|f(x)-A|<\varepsilon ε>0,δ>0,xOo(x0,δ),s.t.∣f(x)A<ε
  • lim ⁡ x → x 0 f ( x ) = ∞ \lim\limits_{x\to x_0}f(x)=\infty xx0limf(x)=
    ∀ G > 0 , ∃ δ > 0 , ∀ x ∈ O o ( x 0 , δ ) , s . t . ∣ f ( x ) ∣ > G \forall G>0,\exists \delta>0,\forall x\in O^o(x_0,\delta),s.t.|f(x)|>G G>0,δ>0,xOo(x0,δ),s.t.∣f(x)>G
  • lim ⁡ x → x 0 f ( x ) = + ∞ \lim\limits_{x\to x_0}f(x)=+\infty xx0limf(x)=+
    ∀ G > 0 , ∃ δ > 0 , ∀ x ∈ O o ( x 0 , δ ) , s . t . f ( x ) > G \forall G>0,\exists \delta>0,\forall x\in O^o(x_0,\delta),s.t.f(x)>G G>0,δ>0,xOo(x0,δ),s.t.f(x)>G
  • lim ⁡ x → x 0 f ( x ) = − ∞ \lim\limits_{x\to x_0}f(x)=-\infty xx0limf(x)=
    ∀ G > 0 , ∃ δ > 0 , ∀ x ∈ O o ( x 0 , δ ) , s . t . f ( x ) < − G \forall G>0,\exists \delta>0,\forall x\in O^o(x_0,\delta),s.t.f(x)<-G G>0,δ>0,xOo(x0,δ),s.t.f(x)<G
  • lim ⁡ x → x 0 + f ( x ) = A \lim\limits_{x\to x_0^+}f(x)=A xx0+limf(x)=A
    ∀ ε > 0 , ∃ δ > 0 , ∀ x ∈ ( x 0 , x 0 + δ ) , s . t . ∣ f ( x ) − A ∣ < ε \forall \varepsilon>0,\exists \delta>0,\forall x\in (x_0,x_0+\delta),s.t.|f(x)-A|<\varepsilon ε>0,δ>0,x(x0,x0+δ),s.t.∣f(x)A<ε
  • lim ⁡ x → x 0 − f ( x ) = A \lim\limits_{x\to x_0^-}f(x)=A xx0limf(x)=A
    ∀ ε > 0 , ∃ δ > 0 , ∀ x ∈ ( x 0 − δ , x 0 ) , s . t . ∣ f ( x ) − A ∣ < ε \forall \varepsilon>0,\exists \delta>0,\forall x\in (x_0-\delta,x_0),s.t.|f(x)-A|<\varepsilon ε>0,δ>0,x(x0δ,x0),s.t.∣f(x)A<ε
  • lim ⁡ x → ∞ f ( x ) = A \lim\limits_{x\to\infty}f(x)=A xlimf(x)=A
    ∀ ε > 0 , ∃ M > 0 , ∀ x ( ∣ x ∣ > M ) , s . t . ∣ f ( x ) − A ∣ < ε \forall \varepsilon>0,\exists M>0,\forall x(|x|>M),s.t.|f(x)-A|<\varepsilon ε>0,M>0,x(x>M),s.t.∣f(x)A<ε

由定义容易得到

命题:极限与左右极限
函数 f ( x ) f(x) f(x) x 0 x_0 x0 处有极限当且仅当 f ( x ) f(x) f(x) x 0 x_0 x0 处的左、右极限存在且相等

性质

  1. 四则运算:设 lim ⁡ x → x 0 f ( x ) , lim ⁡ x → x 0 g ( x ) \lim\limits_{x\to x_0}f(x),\lim\limits_{x\to x_0}g(x) xx0limf(x),xx0limg(x) 均存在,则
    lim ⁡ x → x 0 ( α f ( x ) + β g ( x ) ) = α lim ⁡ x → x 0 f ( x ) + β lim ⁡ x → x 0 g ( x ) \lim\limits_{x\to x_0}(\alpha f(x)+\beta g(x))=\alpha \lim\limits_{x\to x_0}f(x)+\beta \lim\limits_{x\to x_0}g(x) xx0lim(αf(x)+βg(x))=αxx0limf(x)+βxx0limg(x) lim ⁡ x → x 0 ( f ( x ) ⋅ g ( x ) ) = lim ⁡ x → x 0 f ( x ) ⋅ lim ⁡ x → x 0 g ( x ) \lim\limits_{x\to x_0}(f(x)\cdot g(x))=\lim\limits_{x\to x_0}f(x)\cdot \lim\limits_{x\to x_0}g(x) xx0lim(f(x)g(x))=xx0limf(x)xx0limg(x) lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ( x ) lim ⁡ x → x 0 g ( x ) ( lim ⁡ x → x 0 g ( x ) ≠ 0 ) \lim\limits_{x\to x_0}\frac{f(x)}{g(x)}=\frac{\lim\limits_{x\to x_0}f(x)}{\lim\limits_{x\to x_0}g(x)}(\lim\limits_{x\to x_0}g(x)\neq 0) xx0limg(x)f(x)=xx0limg(x)xx0limf(x)(xx0limg(x)=0)
  2. 唯一性:
    A , B A,B A,B 都是 f ( x ) f(x) f(x) x 0 x_0 x0 处的极限,则 A = B A=B A=B

证明思路:
∣ A − B ∣ ≤ ∣ A − f ( x ) ∣ + ∣ B − f ( x ) ∣ < ε |A-B|\leq |A-f(x)|+|B-f(x)|<\varepsilon ABAf(x)+Bf(x)<ε

  1. 保序性
    极限有序 ⇒ \Rightarrow 函数局部有序:
    lim ⁡ x → x 0 f ( x ) > lim ⁡ x → x 0 g ( x ) \lim\limits_{x\to x_0}f(x)>\lim\limits_{x\to x_0}g(x) xx0limf(x)>xx0limg(x) ,则 ∃ δ > 0 , ∀ x ∈ O o ( x 0 , δ ) , s . t . f ( x ) > g ( x ) \exists \delta>0,\forall x\in O^o(x_0,\delta),s.t.f(x)>g(x) δ>0,xOo(x0,δ),s.t.f(x)>g(x)函数有序 ⇒ \Rightarrow 极限有序:
    lim ⁡ x → x 0 f ( x ) , lim ⁡ x → x 0 g ( x ) \lim\limits_{x\to x_0}f(x),\lim\limits_{x\to x_0}g(x) xx0limf(x),xx0limg(x) 存在,且 f ( x ) ≥ g ( x ) f(x)\geq g(x) f(x)g(x),则 lim ⁡ x → x 0 f ( x ) ≥ lim ⁡ x → x 0 g ( x ) \lim\limits_{x\to x_0}f(x)\geq \lim\limits_{x\to x_0}g(x) xx0limf(x)xx0limg(x)

  2. 极限存在 ⇒ \Rightarrow 函数局部有界
    lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A,则
    ∃ δ > 0 , ∃ M > 0 , ∀ x ∈ O o ( x 0 , δ ) , ∣ f ( x ) ∣ ≤ M \exists \delta>0,\exists M>0,\forall x\in O^o(x_0,\delta),|f(x)|\leq M δ>0,M>0,xOo(x0,δ),f(x)M

  3. 夹逼性:
    lim ⁡ x → x 0 g ( x ) = lim ⁡ x → x 0 h ( x ) = A \lim\limits_{x\to x_0}g(x)=\lim\limits_{x\to x_0}h(x)=A xx0limg(x)=xx0limh(x)=A,且 ∃ δ > 0 , s . t . ∀ x ∈ O o ( x 0 , δ ) \exists \delta>0,s.t.\forall x\in O^o(x_0,\delta) δ>0,s.t.∀xOo(x0,δ),有 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x)\leq f(x)\leq h(x) g(x)f(x)h(x),则 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A

函数极限的另一种定义

定义:函数极限
若对任意序列 { x n } ( x n ≠ x 0 ) \{x_n\}(x_n\neq x_0) {xn}(xn=x0) lim ⁡ n → ∞ x n = x 0 \lim\limits_{n\to\infty}x_n=x_0 nlimxn=x0,都有 lim ⁡ n → ∞ f ( x n ) = A \lim\limits_{n\to\infty}f(x_n)=A nlimf(xn)=A,则称 f ( x ) f(x) f(x) x 0 x_0 x0 处有极限 A A A

注:其余情形的函数极限定义类似

Heine 定理
两种极限的定义等价,即 ∀ ε > 0 , ∃ δ > 0 , ∀ x ∈ O o ( x 0 , δ ) , s . t . ∣ f ( x ) − A ∣ < ε \forall \varepsilon>0,\exists \delta>0,\forall x\in O^o(x_0,\delta),s.t.|f(x)-A|<\varepsilon ε>0,δ>0,xOo(x0,δ),s.t.∣f(x)A<ε等价于
∀ { x n } ( x n ≠ x 0 ) , lim ⁡ n → ∞ x n = x 0 , s . t . lim ⁡ n → ∞ f ( x n ) = A \forall \{x_n\}(x_n\neq x_0),\lim\limits_{n\to\infty}x_n=x_0,s.t.\lim\limits_{n\to\infty}f(x_n)=A {xn}(xn=x0),nlimxn=x0,s.t.nlimf(xn)=A

证明思路
定义 1 推出定义 2 显然,考虑反面,用反证法,设
∃ ε 0 > 0 , ∀ δ > 0 , ∃ x ∈ O o ( x 0 , δ ) , ∣ f ( x ) − A ∣ ≥ ε 0 \exists\varepsilon_0>0,\forall\delta>0,\exists x\in O^o(x_0,\delta),|f(x)-A|\geq \varepsilon_0 ε0>0,δ>0,xOo(x0,δ),f(x)Aε0取数列 { δ n = 1 n } \{\delta_n=\frac{1}{n}\} {δn=n1}

δ 1 = 1 \delta_1=1 δ1=1,存在 x 1 ∈ O o ( x 0 , δ 1 ) x_1\in O^o(x_0,\delta_1) x1Oo(x0,δ1),使得 ∣ f ( x 1 ) − A ∣ ≥ ε 0 |f(x_1)-A|\geq \varepsilon_0 f(x1)Aε0
δ 2 = 1 2 \delta_2=\frac{1}{2} δ2=21,存在 x 2 ∈ O o ( x 0 , δ 2 ) x_2\in O^o(x_0,\delta_2) x2Oo(x0,δ2),使得 ∣ f ( x 2 ) − A ∣ ≥ ε 0 |f(x_2)-A|\geq \varepsilon_0 f(x2)Aε0
⋯ \cdots
δ k = 1 k \delta_k=\frac{1}{k} δk=k1,存在 x k ∈ O o ( x 0 , δ k ) x_k\in O^o(x_0,\delta_k) xkOo(x0,δk),使得 ∣ f ( x k ) − A ∣ ≥ ε 0 |f(x_k)-A|\geq \varepsilon_0 f(xk)Aε0

故得到 lim ⁡ n → ∞ x n = x 0 \lim\limits_{n\to\infty}x_n=x_0 nlimxn=x0 但不满足 lim ⁡ n → ∞ f ( x n ) = A \lim\limits_{n\to\infty}f(x_n)=A nlimf(xn)=A

Cauchy收敛准则

lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A 当且仅当
∀ ε > 0 , ∃ δ > 0 , ∀ x 1 , x 2 ∈ O o ( x 0 , δ ) , ∣ f ( x 1 ) − f ( x 2 ) ∣ ≤ ε \forall\varepsilon>0,\exists \delta>0,\forall x_1,x_2\in O^o(x_0,\delta),|f(x_1)-f(x_2)|\leq \varepsilon ε>0,δ>0,x1,x2Oo(x0,δ),f(x1)f(x2)ε

证明:
必要性显然,是经典的加减同一项再辅以三角不等式的技巧
充分性:用到极限的第二种定义,取 lim ⁡ n → ∞ x n = x 0 \lim\limits_{n\to\infty}x_n=x_0 nlimxn=x0,易证 { f ( x n ) } \{f(x_n)\} {f(xn)} 是Cauchy列,从而收敛

参考书:

  • 《数学分析》陈纪修 於崇华 金路
  • 《数学分析之课程讲义》清华大学数学系及丘成桐数学中心
  • 《数学分析习题课讲义》谢惠民 恽自求 易法槐 钱定边 著
  • 43
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值