快速直观理解多元函数可偏导 可微 连续间的关系

无公式!
### 多元函数 可偏导 可微 连续 关系的直观理解

在讨论函数的可导性和连续性时,我们经常会遇到“强条件”和“弱条件”这两个概念。简单来说,**强条件**是指较为严格、较难实现的条件,而**弱条件**则较为宽松。强条件通常能够推导出弱条件,但反过来不一定成立。

#### 一元函数的情况

对于一元函数来说:

- **连续**:只要画出一条不间断的线,函数就可以连续。
- **可导**:若函数不仅连续,**而且可以画出一条没有突变的平滑线**,那么它的导数就存在。这个条件相对更强,因为它要求函数没有任何“尖点”或者“折线”。

导数的存在意味着在某一点附近,函数的变化趋势是平滑的,任何不连续或者突变的地方都会导致不可导。所以,对于一元函数,连续性并不一定能推导出可导性,而可导性则能推出连续性。

#### 多元函数的情况

对于多元函数:

- **可偏导**:描述了函数在两个坐标轴方向的变化情况。一个函数在某一点可偏导,意味着在该点沿着x或者y坐标轴方向,函数的变化是平滑的。但是,这个条件相对**较弱**,它只保证了函数在某一方向上的平滑性,而不能保证其他方向的平滑性。
- **连续**:随便画一个平面,只要这个平面没坑洞,没有出现**一点多极限值**(考虑$\frac{x^{2}}{x^{2}+y^{2}}(0,0)处的现象$)的情况,那么他就连续
- **可微**:描述的是函数的**整体平滑性**。若一个函数在某一点是可微的,意味着它的图像在该点附近可以用一个微小的平面来逼近,类似于一元函数的平滑曲线。**可微的条件比可偏导更强**,它要求函数在所有方向上都是平滑的。

#### 为什么可偏导不能推导出连续?

可偏导只是描述了函数在**x或y**坐标轴方向的平滑性,它并没有涉及到函数在其他方向上的表现。举个例子:

- 想象在二维平面上,某一点的函数值沿着**x轴**和**y轴**方向是连续且平滑的,但如果你沿着其他方向(比如45度方向)趋近于该点,函数值可能会发生突变。这样,尽管在每个轴上偏导数存在,函数却可能存在**“阶梯函数”**式的跳变(即一个点多极限值),在某些方向上出现突变,从而不满足连续性要求。

#### 为什么连续不能推出可偏导

连续的函数图像并不意味着它一定是可导的,想象一个平面上有一个突出的尖刺。这种图形虽然连续,但却不可导的——因为尖刺处导数无法定义。

#### 为什么可微能推出可偏导和连续
在上述的定义,可微这个条件最强,要求函数图像处处都可以用一个切平面近似,保证函数图像整体平滑,因此能推出可偏导和连续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值