面向决策者的Generative AI
关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, 生成式AI, Amazon CodeWhisperer, Generative Ai Applications, Business Decision Making, Ai Responsibility, Ai Implementation, Content Generation]
导读
在这60分钟的领导者专场中,我们将探讨有助于您在涉及人工智能的项目中做出明确决策的生成式AI因素。来了解生成式AI术语的基础知识,以及使用生成式AI的潜在益处和风险。此外,还将学习规划生成式AI项目的步骤,以及构建一个准备好迎接生成式AI的组织所需考虑的关键因素。
演讲精华
以下是小编为您整理的本次演讲的精华。
Scott Friedl首先强调了生成式人工智能(Generative AI)的重要性,这是一个近期受到广泛关注和成为热门词汇的术语。他解释说,本次会议旨在全面介绍生成式人工智能,探讨其实际应用以及可能带来的商业价值。此外,会议还将探讨生成式人工智能的技术基础,但不会过多深入复杂的细节。最重要的是,会议将指导决策者如何在各自的组织内负责任地实施生成式人工智能项目。
阐述人工智能(AI)的概念时,Scott将其定义为利用机器来促进更好的决策并提高生产力的一种手段。然后,他解释了机器学习的概念,说明它如何摄取数据集、处理数据、识别模式和因果关系,并基于发现的模式生成预测。为了说明仅依赖口头因果关系的局限性,Scott举了Punxsutawney Phil的例子,这是一只据说其影子可以预测春天到来的土拨鼠,但其准确率仅为40%。
转而谈到生成式人工智能,Scott阐述说,它可以解释大量未标记的数据,并确定如何对这些数据进行分类,以应用于其建模过程,从而赋予更大的灵活性和稳健性。他强调,生成式人工智能创造上下文,而不仅仅是做出预测,因此它能够生成对话、故事、图像、视频、音频和代码。
Scott接着回顾了亚马逊采用机器学习的历史,追溯到20多年前的2001年实施个性化推荐。他提到了最近的进展,如亚马逊CodeWhisperer(或亚马逊Q Developer),这是一款代码助手工具,通过提供建议和代码审查来提高开发人员的生产力。值得注意的是,早期研究显示,使用亚马逊CodeWhisperer预览版的参与者完成任务的可能性提高了27%,速度比不使用该工具的人快57%。Scott强调了亚马逊CodeWhisperer带来的生产力提升,使初级开发人员能够获得自动化指导和代码审查建议,而不必打扰资深开发人员寻求帮助。
讨论的生成式人工智能的四大主要用例如下:1)创造力:包括内容生成、代码生成和头脑风暴;2)生产力:通过像亚马逊CodeWhisperer这样的工具来提高员工生产力;3)用户体验:为客户互动提供对话式聊天机器人和问答系统;4)业务流程:实现内容总结、工作流程优化和重复性任务自动化。
为了阐明这些用例,Scott举例说明了它们在各个行业的潜在应用。在医疗保健领域,他强调了医学影像分析;在金融服务领域,生成富有同情心的债务催收通知;在制造业,流程优化;在零售业,虚拟试衣;在媒体和娱乐业,内容生成和分析。具体在媒体和娱乐行业,他引用了Canal Plus集团的性别平等分析用例,该用例利用Amazon Rekognition进行视频分析和开源神经网络进行音频分析,识别演员及其在电影和电视节目中的发言时间。例如,在法国剧集“拉斐特”中,分析显示47%的总发言时间归属于女性角色,她们在屏幕上的时间占47%。
深入探讨技术基础,Scott阐述了基础模型(预先在大量数据上训练)、标记化(将提示分解为模型可解释的标记的过程)和解码(预测下一个单词或标记的概率)。作为一个实际练习,Scott挑战观众观察他们智能手机上的预测文本功能,这是生成式人工智能的一个简单而无处不在的例子。
要实施生成式人工智能项目,Scott概述了四个步骤:定义范围、选择模型、通过微调和提示工程调整模型,最后使用模型。他强调了负责任的人工智能的至关重要性,解决了公平性、隐私、错误(幻觉)、有毒性、剽窃以及对工作性质的潜在干扰等问题。
Scott就组织准备工作提供了指导,强调了确保领导层的支持、培训员工、将生成式人工智能作为生产力工具引入、庆祝成功并鼓励员工反馈的必要性。他还强调了治理、透明度以及建立道德标准和控制的重要性。
会议最后由嘉宾演讲者Stefan Mumi(Canal Plus集团的首席技术官)分享了他们在生成式人工智能方面的经历。Stefan阐述了在一家拥有9000名员工(其中包括2000名工程师和技术人员)的大型老牌公司实施人工智能的挑战。他强调了他们制定的战略计划,包括创建一个人工智能工厂,并培训350名员工掌握亚马逊云科技服务和各个领域的认证,包括架构师、数据、流数据、机器学习、安全和自然语言处理。
Stefan重点介绍了他们实施的三个用例:1)性别平等分析,即识别演员及其在电影和电视节目中的发言时间,以符合监管要求和实现平衡;2)由亚马逊云科技服务(如Bedrock)支持的多语种聊天机器人,处理来自52个国家和7家公司的客户查询;3)内容智能,即从视频内容生成元数据,用于广告、参与度分析和其他商业用途。
关于聊天机器人用例,Stefan强调了他们方法的可扩展性,利用微服务和对支持数据库进行矢量化,使他们能够轻松整合其他数据源,如节目内容、技术信息等。该聊天机器人与Genesys客户关系管理解决方案集成。
对于内容智能用例,Stefan强调了进行概念验证并计算投资回报率的重要性,然后再将元数据生成过程扩展到数千部电影和系列。他强调了潜在的商业应用,例如基于识别的汽车品牌进行广告定位,或通过识别涉及生态主题的电影来分析环境影响。该用例利用亚马逊云科技服务(如Bedrock、Amazon Rekognition)和其他应用程序来分析单个场景并生成元数据。
Stefan强调了在生产环境中管理生成式人工智能项目的挑战,包括网络安全问题、监管合规性以及确保跨多个国家和语言的24/7可用性。
总之,本次会议全面介绍了生成式人工智能、其用例、技术基础、实施考虑因素以及负责任地采用这项技术,并以亚马逊和Canal Plus集团利用生成式人工智能创造商业价值的真实案例为例,同时解决了大型老牌组织面临的挑战。
下面是一些演讲现场的精彩瞬间:
演讲者欢迎在场的观众,认可他们作为决策者的角色,并介绍了本次会议的主题“面向决策者的生成式人工智能”。
Alexa这款由机器学习驱动的个人语音助手已经存在了十多年,彻底改变了我们与人工智能的日常互动方式。
Swami Sivasubramanian通过智能手机上的预测文本输入功能,强调了生成式人工智能在我们日常生活中的无处不在,并鼓励企业领导人以负责任的方式拥抱这项技术。
Andy Jassy强调在着手涉及人工智能技术(如预测编码或聊天机器人)的项目之前,需要明确定义范围,并考虑客户需求、技术可行性和投资回报率。
亚马逊云科技首席执行官Adam Selipsky解释了如何通过提示工程和模型定制,对基础人工智能模型进行微调和调整,以适应特定的业务环境和使用场景。
强调组织准备就绪、员工培训以及在采用新技术以改善业务时庆祝胜利的重要性。
演讲者强调确定明确的业务用例、与法规保持一致以及利用人工智能生成可以驱动业务价值的元数据的重要性。
总结
在这场引人入胜的会议中,Scott Friedl和Stefan Mumi为决策者提供了对生成式人工智能(Generative AI)及其实际应用的全面概述。Scott首先介绍了生成式人工智能的概念,解释了它如何利用机器学习模型来创建情境内容、代码、图像和对话交互。他强调了生成式人工智能在创造力、生产力、客户体验和流程优化等各种用例中的潜在商业价值。
Scott随后深入探讨了技术基础,包括基础模型、标记化以及微调和提示工程的过程。他强调了负责任地实施人工智能的重要性,解决了公平性、隐私、风险缓解和劳动力中断等问题。Scott概述了实施生成式人工智能项目的四个步骤:定义范围、选择模型、调整模型和负责任地使用模型。
Stefan Mumi随后分享了Canal Plus在生成式人工智能方面的经历,重点介绍了他们在公司内部创建人工智能工厂的战略计划。他讨论了三个成功案例:用于内容平衡的性别质量分析、用于客户服务的多语种聊天机器人以及用于元数据生成的内容智能。Stefan强调了找到明确的业务案例、培训员工以及管理在生产环境中部署生成式人工智能的运营挑战的重要性。
总之,这次会议提供了对生成式人工智能的全面理解,包括其潜在的商业价值、技术考虑因素以及负责任实施的重要性。演讲者的见解和真实案例展示了生成式人工智能在各个行业为决策者带来的变革力量。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。