基于OpenCV的裂缝检测和测量

基于OpenCV的裂缝检测和测量

使用OpenCV检测桥墩表面照片中的裂缝,并测量裂缝的长度和宽度,这是我的毕业设计中最核心的部分。学习OpenCV如何使用并不难,找到正确的处理流程才是关键。所以在此记录、分享一下思路和代码。

处理流程如下:

图像灰度化
增加对比度
Canny边缘检测
用形态学连接临近裂缝
找出所有连通域,删除非裂缝噪点区域
对每个连通域提取骨架,测量长度和宽度

代码托管在码云上,详见这里

另外,包含了裂缝处理功能的桌面应用同样托管在码云上,详见这里。

下面是处理效果:
源图像
在这里插入图片描述
二值化
在这里插入图片描述
去噪
在这里插入图片描述
提取骨架和测量
在这里插入图片描述

重叠结果
在这里插入图片描述

待优化的地方还有许多,尤其是测量。不过大体效果还可以,继续改进吧。


作者:东方fan
来源:CSDN
原文:https://blog.csdn.net/FunnyWhiteCat/article/details/81387561
版权声明:本文为博主原创文章,转载请附上博文链接!

基于OpenCV裂缝检测通常涉及图像处理和计算机视觉技术,尤其是边缘检测和特征提取。以下是一个简单的Python示例,展示如何使用OpenCV库进行裂缝检测的基本步骤: ```python import cv2 import numpy as np # 读取图像 img = cv2.imread('crack_image.jpg', cv2.IMREAD_GRAYSCALE) # 高斯滤波去除噪声 blurred_img = cv2.GaussianBlur(img, (5, 5), 0) # Canny边缘检测 edges = cv2.Canny(blurred_img, low_threshold=50, high_threshold=150) # 双向形态学操作(膨胀-腐蚀) kernel = np.ones((3, 3), np.uint8) dilated_edges = cv2.dilate(edges, kernel, iterations=1) eroded_edges = cv2.erode(dilated_edges, kernel, iterations=1) # 找出连续的边缘区域 contours, hierarchy = cv2.findContours(eroded_edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 对轮廓进行分析,比如计算面积、形状等,找出疑似裂缝的部分 for contour in contours: if cv2.contourArea(contour) > 1000: # 设置阈值来过滤小的噪声区域 x, y, w, h = cv2.boundingRect(contour) cv2.rectangle(img, (x, y), (x+w, y+h), (0, 0, 255), 2) # 绘制矩形标记裂缝 cv2.imshow('Crack Detection', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这个例子首先对灰度图像进行平滑处理,然后应用Canny算法找到边缘。接着通过形态学操作来连接断裂的边缘,并寻找可能的裂缝区域。注意这只是一个基本流程,实际应用可能需要更复杂的图像预处理和机器学习算法来提高准确性和鲁棒性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值