华为昇腾AI处理器,atc模型转换和推理过程,华为的CANN库对标的是NVIDIA的cuda,所以在华为昇腾AI处理器上安装了CANN后,就可以直接使用pytorch了,以及推理框架(参考学习)

1,模型转换atc模型转换

在这里插入图片描述
模型转换如图
参考链接如下:
https://toscode.mulanos.cn/ascend/samples/tree/master/inference/modelInference/sampleResnetQuickStart/cpp

2,推理运行,这里需要注意用到了infer,有点类似的pytorch对模型的加载使用

在这里插入图片描述

model = InferSession(0, model_path)
参考链接1:

<think>好的,我现在需要在华为升腾平台上部署YOLOv5模型。首先,我需要了解整个流程是怎样的。根据用户提供的引用内容,特别是引用[2]中提到,华为CANN标的NVIDIACUDA,所以安装CANN后可以使用PyTorch,但需要将模型转换华为的OM模型。这可能涉及到模型转换工具ATC使用。 接下来,引用[3]中的例子提到了在OrangePi AIPro上进行YOLOv5的部署,使用了预训练的pt文件,然后通过predict.py运行检测。这说明部署过程可能包括将PyTorch模型转换为昇腾支持的格式,然后使用特定的推理脚本。 首先,我需要确认环境准备。根据引用[2],昇腾处理器需要安装CANN套件,并且支持PyTorch框架。因此,第一步应该是安装CANN相关依赖。然后,需要获取YOLOv5的源码,并确保其适配昇腾平台,可能需要修改部分代码或使用昇腾提供的。 接下来是模型转换。用户提到的atc工具,这是将模型转换为OM格式的关键步骤。YOLOv5的PyTorch模型(.pt)需要先导出为ONNX格式,然后再通过ATC转换为OM模型。这里需要注意是否有特定的操作符或层需要调整,以适应昇腾的硬件。 然后,部署推理阶段。引用[3]中的示例使用predict.py脚本,但昇腾平台上可能需要使用不同的推理接口,比如使用昇腾的ACL(Ascend Computing Language)或者PyTorch的昇腾后端。需要查看昇腾的文档,确定如何加载OM模型并进行推理。 此外,性能优化也是一个考虑点。昇腾平台可能有特定的优化建议,比如模型量化、图优化等,这些在引用[1]中提到的YOLOv5 Ascend项目可能有相关实现。需要参考项目仓的说明,应用这些优化方法。 可能遇到的问题包括模型转换失败,某些层不支持,或者推理时性能不佳。需要查阅昇腾的文档社区,寻找解决方案,或者调整模型结构。例如,在模型转换时,可能需要添加特定的配置参数,或者修改模型的某些部分以适应ATC工具的要求。 总结步骤大致为:环境准备→模型转换→部署推理→性能优化。需要逐步检查每个环节,确保符合昇腾平台的要求,并参考提供的引用中的具体操作,如使用ATC工具转换模型,运行预测脚本等。</think>在华为昇腾AI处理器上部署YOLOv5模型的流程可分为以下步骤: --- ### **一、环境准备** 1. **安装CANN套件** 华为昇腾平台需安装异构计算架构CANN(Compute Architecture for Neural Networks),提供昇腾处理器的驱动AI框架支持。安装完成后,PyTorch框架直接调用昇腾硬件资源[^2]。 2. **配置Python环境** 建议使用昇腾官方推荐的Python版本(如Python 3.7+),并安装依赖: ```bash pip install torch numpy opencv-python ``` --- ### **二、模型转换** 1. **导出YOLOv5模型为ONNX格式** 使用YOLOv5官方脚本将预训练模型(`.pt`文件)导出为ONNX格式: ```bash python export.py --weights yolov5s.pt --include onnx --opset 12 ``` 2. **使用ATC工具转换为OM模型** 昇腾的`atc`工具用于将ONNX模型转换为昇腾专用的离线模型(`.om`文件): ```bash atc --model=yolov5s.onnx --framework=5 --output=yolov5s_om --input_format=NCHW --soc_version=Ascend310 ``` *注意:需根据具体昇腾芯片型号(如Ascend 310/910)调整`soc_version`参数。* --- ### **三、部署与推理** 1. **加载OM模型并执行推理** 使用昇腾提供的ACL(Ascend Computing Language)接口或PyTorch昇腾后端进行推理。示例代码片段: ```python import torch from ais_bench.infer.interface import InferSession # 初始化昇腾推理会话 session = InferSession(device_id=0, model_path="yolov5s_om.om") # 预处理输入数据 input_data = preprocess(image) # 执行推理 outputs = session.infer([input_data]) # 后处理输出结果 detections = postprocess(outputs) ``` 2. **运行目标检测脚本** 参考引用[3]中的方法,使用昇腾优化的预测脚本: ```bash python segment/predict.py --weights ~/yolov5s_om.om --data huawei.jpg ``` --- ### **四、性能优化建议** - **启用混合精度**:在模型转换时添加`--precision_mode allow_fp32_to_fp16`以启用FP16加速。 - **使用AOE调优工具**:通过自动优化引擎(AOE)对OM模型进行性能调优。 - **多线程推理**:利用昇腾处理器的多核并行能力提升吞吐量[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鼾声鼾语

感谢您的支持鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值