机器学习-04-逻辑回归 LogisticRegression

逻辑回归和其他模型的区别与联系

逻辑回归和最大熵模型本质上没有区别,最大熵在解决二分类问题时就是逻辑回归,在解决多分类问题时就是多项逻辑回归。

逻辑回归

Logistic 回归的本质是:假设数据服从这个分布,然后使用极大似然估计做参数的估计。

Sigmod函数

在这里插入图片描述

Regression问题的常规步骤为:

  • 寻找h函数(即hypothesis);
  • 构造J函数(损失函数);
  • 想办法使得J函数最小并求得回归参数(θ)

推导公式一看就懂

对比多家,这个是唯一一个,一看就懂的(每一步推导都很清晰)

  1. 线性回归模型的模型如下:
    y = θ 0 + θ 1 x 1 + θ 2 x 2 + ⋯ + θ n x n h θ ( x ) = θ T x y=\theta_0+\theta_1x_1+\theta_2x_2+\cdots+\theta_nx_n \\ h_\theta(x)=\theta^Tx y=θ0+θ1x1+θ2x2++θnxnhθ(x)=θTx
  2. Sigmoid函数:
    g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1
  3. 将线性回归模型带入 g ( z ) g(z) g(z)中,得到最终的逻辑回归模型:
    h θ ( x ) = g ( θ T x ) = 1 1 + e − θ T x h_\theta(x)=g(\theta^Tx)=\frac{1}{1+e^{-\theta^Tx}} hθ(x)=g(θTx)=1+eθTx1
  4. 假定上个表达式是等于类1的概率,那么类0的概率等于1减去类1的概率:
    { P ( c = 1 ∣ x ; θ ) = h θ ( x ) P ( c = 0 ∣ x ; θ ) = 1 − h θ ( x ) \left\{\begin{array}{l} P(c=1 \mid x ; \theta)=h_{\theta}(x) \\ P(c=0 \mid x ; \theta)=1-h_{\theta}(x) \end{array}\right. {P(c=1x;θ)=hθ(x)P(c=0x;θ)=1hθ(x)
$$
\left\{\begin{array}{l}
P(c=1 \mid x ; \theta)=h_{\theta}(x) \\
P(c=0 \mid x ; \theta)=1-h_{\theta}(x)
\end{array}\right.
$$

整合到一个公式:
P ( c = y ∣ x ; θ ) = P ( y ∣ x ; θ ) = ( h θ ( x ) ) y ( 1 − h θ ( x ) ) 1 − y P(c=y|x;\theta)=P(y|x;\theta)=(h_\theta(x))^y(1-h_\theta(x))^{1-y} P(c=yx;θ)=P(yx;θ)=(hθ(x))y(1hθ(x))1y
5. 那么似然函数为:
L ( θ ) = ∏ i = 1 m ( h θ ( x ) ) y ( 1 − h θ ( x ) ) 1 − y L(\theta)=\prod_{i=1}^{m}\left(h_{\theta}(x)\right)^{y}\left(1-h_{\theta}(x)\right)^{1-y} L(θ)=i=1m(hθ(x))y(1hθ(x))1y

$$
L(\theta)=\prod_{i=1}^{m}\left(h_{\theta}(x)\right)^{y}\left(1-h_{\theta}(x)\right)^{1-y}
$$
  1. 取对数得:

log ⁡ ( L ( θ ) ) = ∑ i = 1 m [ y ( i ) log ⁡ h θ ( x ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] \log (L(\theta))=\sum_{i=1}^{m}\left[y^{(i)} \log h_{\theta}\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right] log(L(θ))=i=1m[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]

  1. 求上式得极大值,引入因子 -1/m,转化为求下式得极小值:
    这就是逻辑回归的log损失函数
    J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) log ⁡ h θ ( x ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J(\theta)=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \log h_{\theta}\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right] J(θ)=m1i=1m[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]

  2. 求损失函数的偏导:
    ∂ J ( θ ) ∂ θ J = − 1 m ∑ i = 1 m ( y ( i ) 1 h θ ( x ( i ) ) ∂ h θ ( x i ) ∂ θ j − ( 1 − y ( i ) ) 1 1 − h θ ( x ( i ) ) ∂ h θ ( x i ) ∂ θ j ) = − 1 m ∑ i = 1 m ( y ( i ) 1 g ( θ T x ( i ) ) − ( 1 − y ( i ) ) 1 1 − g ( θ T x ( i ) ) ) ⋅ ∂ g ( θ T x ( i ) ) ∂ θ j = − 1 m ∑ i = 1 m ( y ( i ) 1 g ( θ T x ( i ) ) − ( 1 − y ( i ) ) 1 1 − g ( θ T x ( i ) ) ) ⋅ g ( θ T x ( i ) ) ( 1 − g ( θ T x ( i ) ) x j ( i ) = − 1 m ∑ i = 1 m ( y ( i ) ( 1 − g ( θ T x ( i ) ) − ( 1 − y ( i ) ) g ( θ T x ( i ) ) ) ⋅ x j ( i ) = − 1 m ∑ i = 1 m ( y ( i ) − g ( θ T x ( i ) ) ) ⋅ x j ( i ) = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x j ( i ) \begin{aligned} \frac{\partial J(\theta)}{\partial \theta_{J}}&=-\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)} \frac{1}{h_{\theta}\left(x^{(i)}\right)} \frac{\partial h_{\theta}\left(x^{i}\right)}{\partial \theta_{j}}-\left(1-y^{(i)}\right) \frac{1}{1-h_{\theta}\left(x^{(i)}\right)} \frac{\partial h_{\theta}\left(x^{i}\right)}{\partial \theta_{j}}\right)\\ &=-\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)} \frac{1}{g\left(\theta^{T} x^{(i)}\right)}-\left(1-y^{(i)}\right) \frac{1}{1-g\left(\theta^{T} x^{(i)}\right)}\right) \cdot \frac{\partial g\left(\theta^{T} x^{(i)}\right)}{\partial \theta_{j}}\\ &=-\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)} \frac{1}{g\left(\theta^{T} x^{(i)}\right)}-\left(1-y^{(i)}\right) \frac{1}{1-g\left(\theta^{T} x^{(i)}\right)}\right) \cdot g\left(\theta^{T} x^{(i)}\right)\left(1-g\left(\theta^{T} x^{(i)}\right) x_{j}^{(i)}\right.\\ &=-\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)}\left(1-g\left(\theta^{T} x^{(i)}\right)-\left(1-y^{(i)}\right) g\left(\theta^{T} x^{(i)}\right)\right) \cdot x_{j}^{(i)}\right.\\ &=-\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)}-g(\theta^{T}x^{(i)})\right) \cdot x_j^{(i)}\\ &=\frac{1}{m} \sum_{i=1}^{m}\left(h_\theta(x^{(i)})-y^{(i)}\right)\cdot x_j^{(i)} \end{aligned} θJJ(θ)=m1i=1m(y(i)hθ(x(i))1θjhθ(xi)(1y(i))1hθ(x(i))1θjhθ(xi))=m1i=1m(y(i)g(θTx(i))1(1y(i))1g(θTx(i))1)θjg(θTx(i))=m1i=1m(y(i)g(θTx(i))1(1y(i))1g(θTx(i))1)g(θTx(i))(1g(θTx(i))xj(i)=m1i=1m(y(i)(1g(θTx(i))(1y(i))g(θTx(i)))xj(i)=m1i=1m(y(i)g(θTx(i)))xj(i)=m1i=1m(hθ(x(i))y(i))xj(i)

$$
\begin{aligned}
\frac{\partial J(\theta)}{\partial \theta_{J}}&=-\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)} \frac{1}{h_{\theta}\left(x^{(i)}\right)} \frac{\partial h_{\theta}\left(x^{i}\right)}{\partial \theta_{j}}-\left(1-y^{(i)}\right) \frac{1}{1-h_{\theta}\left(x^{(i)}\right)} \frac{\partial h_{\theta}\left(x^{i}\right)}{\partial \theta_{j}}\right)\\
&=-\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)} \frac{1}{g\left(\theta^{T} x^{(i)}\right)}-\left(1-y^{(i)}\right) \frac{1}{1-g\left(\theta^{T} x^{(i)}\right)}\right) \cdot \frac{\partial g\left(\theta^{T} x^{(i)}\right)}{\partial \theta_{j}}\\
&=-\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)} \frac{1}{g\left(\theta^{T} x^{(i)}\right)}-\left(1-y^{(i)}\right) \frac{1}{1-g\left(\theta^{T} x^{(i)}\right)}\right) \cdot g\left(\theta^{T} x^{(i)}\right)\left(1-g\left(\theta^{T} x^{(i)}\right) x_{j}^{(i)}\right.\\
&=-\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)}\left(1-g\left(\theta^{T} x^{(i)}\right)-\left(1-y^{(i)}\right) g\left(\theta^{T} x^{(i)}\right)\right) \cdot x_{j}^{(i)}\right.\\
&=-\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)}-g(\theta^{T}x^{(i)})\right) \cdot x_j^{(i)}\\
&=\frac{1}{m} \sum_{i=1}^{m}\left(h_\theta(x^{(i)})-y^{(i)}\right)\cdot x_j^{(i)}
\end{aligned}
$$

上面公式推导需要带入下面公式:
h θ ( x ) = g ( θ T x ) = 1 1 + e − θ T x h_\theta(x)=g(\theta^Tx)=\frac{1}{1+e^{-\theta^Tx}} hθ(x)=g(θTx)=1+eθTx1
同时需要用到sigmoid函数的导数公式:
g ( x ) = 1 1 + e − x g ′ ( x ) = g ( x ) ( 1 − g ( x ) ) g(x)=\frac{1}{1+e^{-x}} \\ g^{\prime}(x)=g(x)(1-g(x)) g(x)=1+ex1g(x)=g(x)(1g(x))
9. 最后根据损失函数更新 theta:
θ j = θ j − α ⋅ ∂ ∂ J ( θ ) , ( j = 0 , 1 , ⋯   , n ) \theta_{j}=\theta_{j}-\alpha \cdot \frac{\partial}{\partial} J(\theta),(j=0,1, \cdots, n) θj=θjαJ(θ),(j=0,1,,n)

代码

from numpy import *
filename='...\\testSet.txt' #文件目录
def loadDataSet():   #读取数据(这里只有两个特征)
    dataMat = []
    labelMat = []
    fr = open(filename)
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])   #前面的1,表示方程的常量。比如两个特征X1,X2,共需要三个参数,W1+W2*X1+W3*X2
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

#sigmoid函数
def sigmoid(inX):  
    return 1.0/(1+exp(-inX))

#梯度上升求最优参数
def gradAscent(dataMat, labelMat): 
    dataMatrix=mat(dataMat) #将读取的数据转换为矩阵
    classLabels=mat(labelMat).transpose() #将读取的数据转换为矩阵
    m,n = shape(dataMatrix)
    alpha = 0.001  #设置梯度的阀值,该值越大梯度上升幅度越大
    maxCycles = 500 #设置迭代的次数,一般看实际数据进行设定,有些可能200次就够了
    weights = ones((n,1)) #设置初始的参数,并都赋默认值为1。注意这里权重以矩阵形式表示三个参数。
    for k in range(maxCycles):
        h = sigmoid(dataMatrix*weights)
        error = (classLabels - h)     #求导后差值
        weights = weights + alpha * dataMatrix.transpose()* error #迭代更新权重
    return weights
    
#随机梯度上升,当数据量比较大时,每次迭代都选择全量数据进行计算,计算量会非常大。
#所以采用每次迭代中一次只选择其中的一行数据进行更新权重。
def stocGradAscent0(dataMat, labelMat):  
    dataMatrix=mat(dataMat)
    classLabels=labelMat
    m,n=shape(dataMatrix)
    alpha=0.01
    maxCycles = 500
    weights=ones((n,1))
    for k in range(maxCycles):
        for i in range(m): #遍历计算每一行
            h = sigmoid(sum(dataMatrix[i] * weights))
            error = classLabels[i] - h
            weights = weights + alpha * error * dataMatrix[i].transpose()
    return weights
    
#改进版随机梯度上升,在每次迭代中随机选择样本来更新权重,
#并且随迭代次数增加,权重变化越小。
def stocGradAscent1(dataMat, labelMat): 
    dataMatrix=mat(dataMat)
    classLabels=labelMat
    m,n=shape(dataMatrix)
    weights=ones((n,1))
    maxCycles=500
    for j in range(maxCycles): #迭代
        dataIndex=[i for i in range(m)]
        for i in range(m): #随机遍历每一行
            alpha=4/(1+j+i)+0.0001  #随迭代次数增加,权重变化越小。
            randIndex=int(random.uniform(0,len(dataIndex)))  #随机抽样
            h=sigmoid(sum(dataMatrix[randIndex]*weights))
            error=classLabels[randIndex]-h
            weights=weights+alpha*error*dataMatrix[randIndex].transpose()
            del(dataIndex[randIndex]) #去除已经抽取的样本
    return weights

def plotBestFit(weights):  #画出最终分类的图
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0]
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1])
            ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1])
            ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.show()

def main():
    dataMat, labelMat = loadDataSet()
    weights=gradAscent(dataMat, labelMat).getA()
    plotBestFit(weights)

if __name__=='__main__':
    main()

在这里插入图片描述

梯度上升

问: 有人会好奇为什么有些书籍上说的是梯度下降法(Gradient Decent)?

答: 其实这个两个方法在此情况下本质上是相同的。关键在于代价函数(cost function)或者叫目标函数(objective function)。如果目标函数是损失函数,那就是最小化损失函数来求函数的最小值,就用梯度下降。 如果目标函数是似然函数(Likelihood function),就是要最大化似然函数来求函数的最大值,那就用梯度上升。在逻辑回归中, 损失函数和似然函数无非就是互为正负关系。

只需要在迭代公式中的加法变成减法

数据集testSet.txt

-0.017612	14.053064	0
-1.395634	4.662541	1
-0.752157	6.538620	0
-1.322371	7.152853	0
0.423363	11.054677	0
0.406704	7.067335	1
0.667394	12.741452	0
-2.460150	6.866805	1
0.569411	9.548755	0
-0.026632	10.427743	0
0.850433	6.920334	1
1.347183	13.175500	0
1.176813	3.167020	1
-1.781871	9.097953	0
-0.566606	5.749003	1
0.931635	1.589505	1
-0.024205	6.151823	1
-0.036453	2.690988	1
-0.196949	0.444165	1
1.014459	5.754399	1
1.985298	3.230619	1
-1.693453	-0.557540	1
-0.576525	11.778922	0
-0.346811	-1.678730	1
-2.124484	2.672471	1
1.217916	9.597015	0
-0.733928	9.098687	0
-3.642001	-1.618087	1
0.315985	3.523953	1
1.416614	9.619232	0
-0.386323	3.989286	1
0.556921	8.294984	1
1.224863	11.587360	0
-1.347803	-2.406051	1
1.196604	4.951851	1
0.275221	9.543647	0
0.470575	9.332488	0
-1.889567	9.542662	0
-1.527893	12.150579	0
-1.185247	11.309318	0
-0.445678	3.297303	1
1.042222	6.105155	1
-0.618787	10.320986	0
1.152083	0.548467	1
0.828534	2.676045	1
-1.237728	10.549033	0
-0.683565	-2.166125	1
0.229456	5.921938	1
-0.959885	11.555336	0
0.492911	10.993324	0
0.184992	8.721488	0
-0.355715	10.325976	0
-0.397822	8.058397	0
0.824839	13.730343	0
1.507278	5.027866	1
0.099671	6.835839	1
-0.344008	10.717485	0
1.785928	7.718645	1
-0.918801	11.560217	0
-0.364009	4.747300	1
-0.841722	4.119083	1
0.490426	1.960539	1
-0.007194	9.075792	0
0.356107	12.447863	0
0.342578	12.281162	0
-0.810823	-1.466018	1
2.530777	6.476801	1
1.296683	11.607559	0
0.475487	12.040035	0
-0.783277	11.009725	0
0.074798	11.023650	0
-1.337472	0.468339	1
-0.102781	13.763651	0
-0.147324	2.874846	1
0.518389	9.887035	0
1.015399	7.571882	0
-1.658086	-0.027255	1
1.319944	2.171228	1
2.056216	5.019981	1
-0.851633	4.375691	1
-1.510047	6.061992	0
-1.076637	-3.181888	1
1.821096	10.283990	0
3.010150	8.401766	1
-1.099458	1.688274	1
-0.834872	-1.733869	1
-0.846637	3.849075	1
1.400102	12.628781	0
1.752842	5.468166	1
0.078557	0.059736	1
0.089392	-0.715300	1
1.825662	12.693808	0
0.197445	9.744638	0
0.126117	0.922311	1
-0.679797	1.220530	1
0.677983	2.556666	1
0.761349	10.693862	0
-2.168791	0.143632	1
1.388610	9.341997	0
0.317029	14.739025	0
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值