大模型微调有“免费的午餐”了,只要一行代码就能让性能提升至少10%。
在7B参数量的Llama 2上甚至出现了性能翻倍的结果,Mistral也有四分之一的增长。
虽然这种方法用在监督微调阶段,但RLHF模型也能从中受益。
来自马里兰州大学、纽约大学等机构的研究人员提出了名为NEFT(une)的微调方式。
这是一种新的正则化技术,可以用于提高微调监督(SFT)模型的性能。
这种方法已经被HuggingFace收录进了TRL库,只要import再加一行代码就能调用。
NEFT不仅操作简便,而且没有显著的成本增加,作者称看起来是个“免费的午餐”。
有网友试着用这种方法微调了基于Guanaco(一种羊驼家族模型)的Mistral-7B,结果性能提升明显。
那么,NEFTune是如何用一行代码给一众大模型“打鸡血”的呢?
向模型中加入噪声
NEFTune的全称是Noisy Embedding Fine Tuning,即“带噪声的嵌入式微调”。
开发者认为,过拟合现象是限制大模型性能的一大因素,因此采用在训练阶段向嵌入层中加入噪声的方式来避免过拟合的出现,从而提高性能。
具体而言,训练数据库中的文本首先会被token化,并转化为嵌入向量。
然后,系统会随机生成一个噪声向量,并用缩放器将噪声调节成所设置的强度。
经过缩放后的噪声会加入到嵌入向量中,作为模型的输入,然后开始训练。
每次迭代训练时,都会生成新的噪声并加入到嵌入层中。
from torch.nn import functional as F
def NEFTune(model, noise_alpha=5)
def noised_embed(orig_embed, noise_alpha):
def new_func(x):
if model.training:
embed_init = orig_embed(x)
dims = torch.tensor(embed_init.size(1) * embed_init.size(2))
mag_norm = noise_alpha/torch.sqrt(dims)
return embed_init + torch.zeros_like(embed_init).uniform_(-mag_norm, mag_norm)
else:
return orig_embed(x)
return new_func
model.base_model.model.model.embed_tokens.forward = noised_embed(model.base_model.model.model.embed_tokens, noise_alpha)
return model
这段代码中,NEFTune函数中的形参noise_alpha就是噪声强度(系数),mag_norm则为实际过程中的噪声范围。
而NEFT只有在训练过程中才会向模型中加入噪声,推理阶段无此过程,代码中的if语句起到的就是这个作用。
训练模式下,new_func函数的返回值即为加入噪声后的嵌入层。
贴出这段代码是为了讲解需要,如果只是想调用NEFT,可以不必使用上面的完整代码,直接从TRL库中调用就可以了。
下面的代码是微调OPT-350M模型的一个示例:
from datasets import load_dataset
from trl import SFTTrainer
dataset = load_dataset("imdb", split="train")
trainer = SFTTrainer(
"facebook/opt-350m",
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=512,
)
trainer.train()
而数据集方面,开发者一共使用了Alpaca、ShareGPT等四种不同数据集进行了微调。
作者介绍,选择这些数据的原因包括它们比较著名、曾成为SOTA等等。
此外出于硬件性能考虑,实验过程中所选择的都是单轮对话数据集。
那么,用NEFT方法调校过后的大模型,表现到底怎么样呢?
性能最高提升1倍
研究团队主要测试了模型调校前后生成的文本质量和对话能力。
其中文本质量主要基于AplacaEval数据集,使用ChatGPT和GPT-4评估。
用作参照的模型是Text-Davinci-003,训练后的模型胜过TD3的比例即为评价指标。
为了节约资源,研究团队先用ChatGPT判断是自己来评价还是调用GPT-4,部分情况下还会人工评判。
结果在不同的训练数据集中,Llama 2调整后都有至少10%的性能提升,在Alpaca数据集上更是直接翻倍。
推广到OPT和Llama 1,NEFT方法同样可以带来一定的性能提升。
而用于评估模型聊天能力的,则是OpenLLM Leadorboard中的任务。
结果发现,NEFT调整后模型的聊天能力同样相比Evol-Instruct有进一步提升。
在成本没有显著增加的情况下,提高文本质量和聊天能力,是否会导致其他能力的下降,作者对此也进行了评估。
结果显示,NEFT方法在不同的数据集和模型上,对模型的其他能力均没有显著影响。
实验过程中,作者还发现,模型生成的文本和并不是照搬训练数据,提示了模型具有一定泛化能力。
为了证实这一点,作者对模型损失进行了评估,结果发现测试数据集损失低于训练数据,证实了这一观点。
此外作者发现,经NEFT调整之后,模型生成的文本不仅质量提高,长度也有所增加,而且增加的并非重复内容。
为了确认文本质量的提高是加入噪声的作用而不是由文本长度的增加所导致,研究人员又进行了消融实验。
结果显示,只是强制模型生成更长的文本无法达到NEFT的效果。
论文地址:
https://arxiv.org/abs/2310.05914
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。