大模型强化学习实操——如何训练一个自己偏好的大模型(附代码)

本篇具体介绍奖励模型原理及作用,并结合代码详细介绍实现方法,在文末附有可执行代码。

基于一个大模型,本系列开始讲如何对大模型进行微调、强化学习,基于大模型本身强大的生成能力引导成更适配于多种应用场景的专属领域大模型。

由于基于大模型进行SFT的一系列操作,例如P-tuning、P-tuning v2等已有很多教程与开源代码,因此本系列将重点放在奖励模型、强化学习与大模型结合的内容。

大模型微调分为系列分为:

1)reward:训练一个具有自己偏好的奖励模型

2)大模型、reward与强化学习强强联合:大模型只生成我想要的回答

本篇主要开始结合代码讲解如何训练一个具有自己偏好的奖励模型。下面是一个快捷目录。

\1. reward模型及原理介绍

\2. 数据处理模块

\3. 模型框架模块

\4. Loss计算模块

一、reward模型及原理介绍

在介绍原理前,我们来再次回顾一下一个类似于chatGPT这样大模型的训练流程。

1. LLM训练流程

  • 预训练:训练数据是海量无标签文本;
  • 监督式微调:训练数据是「指令 - 输入 - 输出」,举个实体关系抽取的例子。此步骤通过给模型一些可参考知识与指令来微调模型,指令学习阶段可以只动小部分模型参数。
inputjson={
"instruction": "你现在是一个信息抽取模型,请你帮我抽取出关系内容为\"性能故障\", \"部件故障\", \"组成\"和 \"检测工具\"的相关三元组,三元组内部用\"_\"连接,三元组之间用\\n分割。文本:", 
"input": "843号汽车故障报告故障现象热车起动困难", 
"output": "车_部件故障_起动困难"
}
  • 对齐:通过强化学习将输出与人类偏好对齐,训练数据是对模型输出内容的评分。

2. 对齐步骤强化学习具体训练流程

其训练流程再分为三步:

  • 第 1 步:对预训练模型进行监督式微调;
  • 第 2 步:创建一个奖励模型;
  • 第 3 步:通过近端策略优化进行微调。

奖励模型在其中的角色,就是在第三步骤中,目的是训练一个跟人类偏好相同的模型,对大模型生成的结果进行打分,并及时将打分结果反馈给模型,通过强化学习纠正或引导模型生成更符合人类要求的结果。

3.奖励模型训练步骤

分为两步:

  • 对模型生成内容进行排名:用上一步中创建的已微调 LLM 为每个 prompt 生成 4-9 个响应。然后再让人基于自己的偏好对这些响应进行排名。
  • 设计奖励模型:基于使用这些排名构建的数据集,可以设计一个奖励模型RM,其输出的是用于 RLHF 第 3 步后续优化阶段的奖励分数。在原本模型的基础上,需要将其输出层(下一 token 分类层)替换成一个回归层,其具有单个输出节点。

4.奖励模型原理与loss设计

因为涉及对人工排序后的句子进行排序,我们引入Rank Loss

假定模型生成4个答案,我们对4个句子的人工评分排序为 A>B>D>C;那么我们需要训练其对应的打分模型,模型生成的分要满足 r(A) > r(B) > r(D) > r©。

此处直接上损失函数公式:

图片

其中,yi 代表排序排在 y1-i 前面的所有句子。

我们代入上面的例子 A>B>D>C :

loss = r(A) - r(B) + r(A) - r(C) + r(A) - r(D) + r(B) - r(D) + ... + r(D) - r(C)
loss = -loss

为了更好得归一化差值,每两项差值都需要过一个 sigmoid 函数,将值拉到 0 ~ 1 之间。

由于这个loss设计的目的是期望模型能够最大化 好句子得分和坏句子得分的差值,而梯度下降做的是最小化操作,因此loss前面的负号的目的是实现最大化差值。

那么奖励模型原理我们介绍完毕了,更直白的理解就是**输入是句子,输出是对该句子的人类偏好评分;这个偏好是可以根据自己的需要去标注评分数据来实现的。**下面我们开始介绍核心代码。

二、数据处理模块

1. 数据示例

本次训练任务:做一个倾向产生好评的奖励模型,为好评给予更高的分数,为差评给予更低的分数。

此模块导入对生成句子进行人工评分后的数据。

数据格式按行切分,每行有多个评价,从前往后,好评在前,差评在后,每个评价间使用’\t’ 分割。

穿着合适,做工很精致,质量不错 穿着特别舒服,而且有弹性。型也好。"非常满意,房间和交通都不错,下次还要住该酒店了"  购买不满意,苹果较酸,不理想,有些吹牛。

2. 数据处理

这里数据处理的关键就是一定要将每一行内的多条评价文本拼到同一个数组内,代码见代码路径中的 loaddata.py,这里只展示核心代码。

try:
      rank_texts = line.strip().split('\t')  
except:
      print(f'"{line}" -> {traceback.format_exc()}')      
      exit()   

rank_texts_prop = {
    'input_ids': [],      
    'token_type_ids': [],      
    'position_ids': [],      
    'attention_mask': []  
}  
for rank_text in rank_texts:   
    encoded_inputs = tokenizer(     
            text=rank_text,              
            truncation=True,              
            max_length=max_seq_len,              
            padding='max_length')        
             
    rank_texts_prop['input_ids'].append(encoded_inputs["input_ids"])      
    rank_texts_prop['token_type_ids'].append(encoded_inputs["token_type_ids"])      
    rank_texts_prop['position_ids'].append([i for i in range(len(encoded_inputs["input_ids"]))])      
    rank_texts_prop['attention_mask'].append(encoded_inputs["attention_mask"])  
for k, v in rank_texts_prop.items():      
    tokenized_output[k] = v

三、模型框架

这里的模型,我们可以任意选择一个预训练好的模型,在原本模型的基础上,将其输出层(下一 token 分类层)替换成一个回归层,这个模型结构就设计完成了。

在本次实践中采用的预训练模型是ernie-3.0-base-zh ,其是用于语言理解和生成的大规模知识强化预训练模型。代码见代码路径中的 model.py,这里只展示核心代码。

class RewardModel(nn.Module):

        def __init__(self, encoder):          
            """          
            init func.         
            Args:            encoder (transformers.AutoModel): backbone, 默认使用 ernie 3.0        """        super().__init__()          
            self.encoder = encoder          
            self.reward_layer = nn.Linear(768, 1)    
               
        def forward(      
            self,         
            input_ids: torch.tensor,          
            token_type_ids: torch.tensor,          
            attention_mask=None,          
            pos_ids=None,      
        ) -> torch.tensor:      
            """          
            forward 函数,返回每句话的得分值。    
        """      
        pooler_output = self.encoder(      
                input_ids=input_ids,              
                token_type_ids=token_type_ids,              
                position_ids=pos_ids,              
                attention_mask=attention_mask,          
            )["pooler_output"]                              # (batch, hidden_size)          
            reward = self.reward_layer(pooler_output)       # (batch, 1)          
            return reward

四、Loss计算模块

1. 加载batch阶段

这里就需要注意结合前面加载数据时,每一行的数据是一个数组,其中包含有多条评价数据且按数组顺序从前到后,由好评到差评,因此我们在加载数据时需要对应数据处理模块的数据结构,将同一行的句子分别送入模型计算出的值装到一个数组。

batch_rank_rewards = []  
for batch_idx in range(len(batch['input_ids'])):   
    rank_texts_count = len(batch['input_ids'][batch_idx])      
    rank_rewards = []      
    for text_idx in range(rank_texts_count):      
        reward = model(       
            batch['input_ids'][batch_idx][text_idx].unsqueeze(dim=0).to(args.device),              
            batch['token_type_ids'][batch_idx][text_idx].unsqueeze(dim=0).to(args.device),              
            batch['attention_mask'][batch_idx][text_idx].unsqueeze(dim=0).to(args.device),              
            batch['position_ids'][batch_idx][text_idx].unsqueeze(dim=0).to(args.device),          
        )            
        
        rank_rewards.append(reward[0])                          
    batch_rank_rewards.append(rank_rewards)

2.训练阶段

这里比较常规,直接上代码。

在这里插入图片描述

3. loss计算部分

从上面我们可以,看到核心函数就是 compute_rank_list_loss,这里的关键依然是每一行的句子评分是在前面计算时有序(从高到低)排序句子的reward列表。

def compute_rank_list_loss(rank_rewards_list: List[List[torch.tensor]], device='cpu') -> torch.Tensor:  
  if type(rank_rewards_list) != list:   
          raise TypeError(f'@param rank_rewards expected "list", received{type(rank_rewards)}.')      
    loss, add_count = torch.tensor([0]).to(device), 0      
    for rank_rewards in rank_rewards_list:       
        for i in range(len(rank_rewards)-1):                                   # 遍历所有前项-后项的得分差              
            for j in range(i+1, len(rank_rewards)):           
                diff = F.logsigmoid(rank_rewards[i] - rank_rewards[j])         # sigmoid到0~1之间                  
                loss = loss + diff                  
                add_count += 1      
    loss = loss / add_count      
    return -loss

那么,至此为什么要训练reward模型,以及如何训练reward模型就说完了。

完整的预训练模型下载地址、数据以及代码见

https://github.com/sailerml/RLHF_GLM

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值